Truncated Estimation of Ratio Statistics with Application to Heavy Tail Distributions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of estimation of the heavy tail index is revisited from the point of view of truncated estimation. A class of novel estimators is introduced having guaranteed accuracy based on a sample of fixed size. The performance of these estimators is quantified both theoretically and in simulations over a host of relevant examples. It is also shown that in several cases the proposed estimators attain — within a logarithmic factor — the optimal parametric rate of convergence. The property of uniform asymptotic normality of the proposed estimators is established.

Sobre autores

D. Politis

Dept. Math.

Autor responsável pela correspondência
Email: dpolitis@ucsd.edu
Estados Unidos da América, San Diego

V. Vasiliev

Dept. Appl.Math. and Cybern.

Email: dpolitis@ucsd.edu
Rússia, Tomsk

S. Vorobeychikov

Dept. Appl.Math. and Cybern.

Email: dpolitis@ucsd.edu
Rússia, Tomsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018