A Minimax Approach to Errors-in-Variables Linear Models
- Авторы: Golubev Y.1,2
-
Учреждения:
- CNRS, Aix-Marseille Univ.
- Inst. for Inform. Transm. Probl.
- Выпуск: Том 27, № 3 (2018)
- Страницы: 205-225
- Раздел: Article
- URL: https://journal-vniispk.ru/1066-5307/article/view/225846
- DOI: https://doi.org/10.3103/S1066530718030031
- ID: 225846
Цитировать
Аннотация
The paper considers a simple Errors-in-Variables (EiV) model Yi = a + bXi + εξi; Zi= Xi + σζi, where ξi, ζi are i.i.d. standard Gaussian random variables, Xi ∈ ℝ are unknown non-random regressors, and ε, σ are known noise levels. The goal is to estimates unknown parameters a, b ∈ ℝ based on the observations {Yi, Zi, i = 1, …, n}. It is well known [3] that the maximum likelihood estimates of these parameters have unbounded moments. In order to construct estimates with good statistical properties, we study EiV model in the large noise regime assuming that n → ∞, but \({\epsilon ^2} = \sqrt n \epsilon _ \circ ^2,{\sigma ^2} = \sqrt n \sigma _ \circ ^2\) with some \(\epsilon_\circ^2, \sigma_\circ^2>0\). Under these assumptions, a minimax approach to estimating a, b is developed. It is shown that minimax estimates are solutions to a convex optimization problem and a fast algorithm for solving it is proposed.
Ключевые слова
Об авторах
Yu. Golubev
CNRS, Aix-Marseille Univ.; Inst. for Inform. Transm. Probl.
Автор, ответственный за переписку.
Email: golubev.yuri@gmail.com
Франция, Marseille; Moscow
Дополнительные файлы
