Tikhonov–Phillips regularizations in linear models with blurred design
- 作者: Golubev Y.1, Zimolo T.2
-
隶属关系:
- CNRS, Aix-Marseille Univ.
- Aix-Marseille Univ.
- 期: 卷 25, 编号 1 (2016)
- 页面: 1-25
- 栏目: Article
- URL: https://journal-vniispk.ru/1066-5307/article/view/225755
- DOI: https://doi.org/10.3103/S1066530716010014
- ID: 225755
如何引用文章
详细
The paper deals with recovering an unknown vector β ∈ ℝp based on the observations Y = Xβ + єξ and Z = X + σζ, where X is an unknown n × p matrix with n ≥ p, ξ ∈ ℝp is a standard white Gaussian noise, ζ is an n × p matrix with i.i.d. standard Gaussian entries, and є, σ ∈ ℝ+ are known noise levels. It is assumed that X has a large condition number and p is large. Therefore, in order to estimate β, the simple Tikhonov–Phillips regularization (ridge regression) with a data-driven regularization parameter is used. For this estimation method, we study the effect of noise σζ on the quality of recovering Xβ using concentration inequalities for the prediction error.
作者简介
Yu. Golubev
CNRS, Aix-Marseille Univ.
编辑信件的主要联系方式.
Email: golubev.yuri@gmail.com
法国, Marseille
Th. Zimolo
Aix-Marseille Univ.
Email: golubev.yuri@gmail.com
法国, Marseille
补充文件
