Tikhonov–Phillips regularizations in linear models with blurred design


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper deals with recovering an unknown vector β ∈ ℝp based on the observations Y = + єξ and Z = X + σζ, where X is an unknown n × p matrix with np, ξ ∈ ℝp is a standard white Gaussian noise, ζ is an n × p matrix with i.i.d. standard Gaussian entries, and є, σ ∈ ℝ+ are known noise levels. It is assumed that X has a large condition number and p is large. Therefore, in order to estimate β, the simple Tikhonov–Phillips regularization (ridge regression) with a data-driven regularization parameter is used. For this estimation method, we study the effect of noise σζ on the quality of recovering using concentration inequalities for the prediction error.

作者简介

Yu. Golubev

CNRS, Aix-Marseille Univ.

编辑信件的主要联系方式.
Email: golubev.yuri@gmail.com
法国, Marseille

Th. Zimolo

Aix-Marseille Univ.

Email: golubev.yuri@gmail.com
法国, Marseille

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016