Tikhonov–Phillips regularizations in linear models with blurred design


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper deals with recovering an unknown vector β ∈ ℝp based on the observations Y = + єξ and Z = X + σζ, where X is an unknown n × p matrix with np, ξ ∈ ℝp is a standard white Gaussian noise, ζ is an n × p matrix with i.i.d. standard Gaussian entries, and є, σ ∈ ℝ+ are known noise levels. It is assumed that X has a large condition number and p is large. Therefore, in order to estimate β, the simple Tikhonov–Phillips regularization (ridge regression) with a data-driven regularization parameter is used. For this estimation method, we study the effect of noise σζ on the quality of recovering using concentration inequalities for the prediction error.

Sobre autores

Yu. Golubev

CNRS, Aix-Marseille Univ.

Autor responsável pela correspondência
Email: golubev.yuri@gmail.com
França, Marseille

Th. Zimolo

Aix-Marseille Univ.

Email: golubev.yuri@gmail.com
França, Marseille

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2016