The minimum increment of f-divergences given total variation distances
- Autores: Gushchin A.A.1
-
Afiliações:
- Steklov Mathematical Institute of RAS
- Edição: Volume 25, Nº 4 (2016)
- Páginas: 304-312
- Seção: Article
- URL: https://journal-vniispk.ru/1066-5307/article/view/225773
- DOI: https://doi.org/10.3103/S1066530716040049
- ID: 225773
Citar
Resumo
Let (Pi, Qi), i = 0, 1, be two pairs of probability measures defined on measurable spaces (Ωi,Fi) respectively. Assume that the pair (P1, Q1) is more informative than (P0,Q0) for testing problems. This amounts to say that If (P1,Q1) ≥ If (P0,Q0), where If (·, ·) is an arbitrary f-divergence. We find a precise lower bound for the increment of f-divergences If(P1,Q1) − If(P0,Q0) provided that the total variation distances ||Q1 − P1|| and ||Q0 − P0|| are given. This optimization problem can be reduced to the case where P1 and Q1 are defined on the space consisting of four points, and P0 and Q0 are obtained from P1 and Q1 respectively by merging two of these four points. The result includes the well-known lower and upper bounds for If(P,Q) given ||Q − P||.
Palavras-chave
Sobre autores
A. Gushchin
Steklov Mathematical Institute of RAS
Autor responsável pela correspondência
Email: gushchin@mi.ras.ru
Rússia, Moscow
Arquivos suplementares
