The minimum increment of f-divergences given total variation distances


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let (Pi, Qi), i = 0, 1, be two pairs of probability measures defined on measurable spaces (Ωi,Fi) respectively. Assume that the pair (P1, Q1) is more informative than (P0,Q0) for testing problems. This amounts to say that If (P1,Q1) ≥ If (P0,Q0), where If (·, ·) is an arbitrary f-divergence. We find a precise lower bound for the increment of f-divergences If(P1,Q1) − If(P0,Q0) provided that the total variation distances ||Q1 − P1|| and ||Q0 − P0|| are given. This optimization problem can be reduced to the case where P1 and Q1 are defined on the space consisting of four points, and P0 and Q0 are obtained from P1 and Q1 respectively by merging two of these four points. The result includes the well-known lower and upper bounds for If(P,Q) given ||Q − P||.

Sobre autores

A. Gushchin

Steklov Mathematical Institute of RAS

Autor responsável pela correspondência
Email: gushchin@mi.ras.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2016