On Optimal Cardinal Interpolation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the Hardy classes of functions analytic in the strip around real axis of a size 2β, an optimal method of cardinal interpolation has been proposed within the framework of Optimal Recovery [12]. Below this method, based on the Jacobi elliptic functions, is shown to be optimal according to the criteria of Nonparametric Regression and Optimal Design.

In a stochastic non-asymptotic setting, the maximal mean squared error of the optimal interpolant is evaluated explicitly, for all noise levels away from 0. A pivotal role is played by the interference effect, in which the oscillations exhibited by the interpolant’s bias and variance mutually cancel each other. In the limiting case β → ∞, the optimal interpolant converges to the well-knownNyquist–Shannon cardinal series.

Sobre autores

B. Levit

Dept. Math. and Statist.

Autor responsável pela correspondência
Email: blevit@queensu.ca
Canadá, Kingston ON

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018