On a Class of L-Wiener-Hopf Operators
- Authors: Kamalyan A.G.1, Karakhanyan M.I.2, Hovhannisyan A.H.2
-
Affiliations:
- Institute ofMathematics NAS RA
- Yerevan State University
- Issue: Vol 53, No 3 (2018)
- Pages: 134-138
- Section: Real and Complex Analysis
- URL: https://journal-vniispk.ru/1068-3623/article/view/228165
- DOI: https://doi.org/10.3103/S1068362318030032
- ID: 228165
Cite item
Abstract
By replacement in the definition of the convolution operator of Fourier transform by a spectral transform of a selfadjoint Sturm-Liouville operator on the axis L, the concepts of Lconvolution and L-Wiener-Hopf operators are introduced. The case of the reflectorless potentials with a single eigenvalue is considered. A relationship between the Wiener-Hopf and L-Wiener- Hopf operators is established. In the case of piecewise continuous symbol the Fredholm property and invertibility of the L-Wiener-Hopf operator are investigated.
About the authors
A. G. Kamalyan
Institute ofMathematics NAS RA
Author for correspondence.
Email: armen.kamalyan@ysu.am
Armenia, Yerevan
M. I. Karakhanyan
Yerevan State University
Email: armen.kamalyan@ysu.am
Armenia, Yerevan
A. H. Hovhannisyan
Yerevan State University
Email: armen.kamalyan@ysu.am
Armenia, Yerevan
Supplementary files
