Sharp Bernstein Type Inequalities for Splines in the Mean Square Metrics
- Authors: Vinogradov O.L.1
-
Affiliations:
- St. Petersburg State University
- Issue: Vol 215, No 5 (2016)
- Pages: 595-600
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/237672
- DOI: https://doi.org/10.1007/s10958-016-2865-3
- ID: 237672
Cite item
Abstract
We give an elementary proof of the sharp Bernstein type inequality
\( {\left\Vert {f}^{(s)}\right\Vert}_2\le \frac{n^s}{2^s}{\left(\frac{\kappa_{2r+1-2s}}{\kappa_{2r+1}}\right)}^{1/2}{\left\Vert {\updelta}_{\frac{\uppi}{n}}^sf\right\Vert}_2. \)![]()
Here n, r, s ∈ ℕ, f is a 2π-periodic spline of order r and of minimal defect with nodes\( \frac{\mathrm{j}\uppi}{n} \), j ∈ Z, δhsis the difference operator of order s with step h, and the Kmare the Favard constants. A similar inequality for the space L2(ℝ) is also established. Bibliography: 5 titles.About the authors
O. L. Vinogradov
St. Petersburg State University
Author for correspondence.
Email: olvin@math.spbu.ru
Russian Federation, St. Petersburg
Supplementary files
