A Functional CLT for Fields of Commuting Transformations Via Martingale Approximation


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider a field f \( \circ {T}_1^{i_1}\circ \dots \circ {T}_d^{i_d} \) , where T1, . . . , Td are completely commuting transformations in the sense of Gordin. If one of these transformations is ergodic, we give sufficient conditions in the spirit of Hannan under which the partial sum process indexed by quadrants converges in distribution to a Brownian sheet. The proof combines a martingale approximation approach with a recent CLT for martingale random fields due to Volný. We apply our results to completely commuting endomorphisms of the m-torus. In that case, the conditions can be expressed in terms of the L2-modulus of continuity of f.

About the authors

C. Cuny

Laboratoire MAS, Centrale-Supelec

Author for correspondence.
Email: christophe.cuny@ecp.fr
France, Chȃtenay-Malabry

J. Dedecker

Université Paris Descartes

Email: christophe.cuny@ecp.fr
France, Paris

D. Volný

Université de Rouen

Email: christophe.cuny@ecp.fr
France, Saint-Etienne du Rouvray

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York