On Intersection of Primary Subgroups of Odd Order in Finite Almost Simple Groups
- Autores: Zenkov V.I.1,2, Nuzhin Y.N.3
-
Afiliações:
- First President of Russia B. N. Yeltsin Ural Federal University
- Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
- Siberian Federal University
- Edição: Volume 221, Nº 3 (2017)
- Páginas: 384-390
- Seção: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/238988
- DOI: https://doi.org/10.1007/s10958-017-3232-8
- ID: 238988
Citar
Resumo
We consider the question of the determination of subgroups A and B such that A∩Bg ≠ 1 for any g ∈ G for a finite almost simple group G and its primary subgroups A and B of odd order. We prove that there exist only four possibilities for the ordered pair (A,B).
Sobre autores
V. Zenkov
First President of Russia B. N. Yeltsin Ural Federal University; Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: V1I9Z52@mail.ru
Rússia, Ekaterinburg; Ekaterinburg
Ya. Nuzhin
Siberian Federal University
Email: V1I9Z52@mail.ru
Rússia, Krasnoyarsk
Arquivos suplementares
