On the Grothendieck–Serre Conjecture Concerning Principal G-Bundles Over Semilocal Dedekind Domains


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let R be a semilocal Dedekind domain, and let K be the field of fractions of R. Let G be a reductive semisimple simply connected R-group scheme such that every semisimple normal R-subgroup scheme of G contains a split R-torus \( {\mathbb{G}}_{m,R} \). It is proved that the kernel of the map

\( {H}_{\overset{\prime }{e}t}^1\left(R,\kern0.5em G\right)\to {H}_{\overset{\prime }{e}t}^1\left(K,\kern0.5em G\right) \)
induced by the inclusion of R into K is trivial. This result partially extends the Nisnevich theorem.

About the authors

I. A. Panin

St.Petersburg Department of the Steklov Mathematical Institute

Author for correspondence.
Email: paniniv@gmail.com
Russian Federation, St.Petersburg

A. K. Stavrova

St.Petersburg State University

Email: paniniv@gmail.com
Russian Federation, St.Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media New York