On the Grothendieck–Serre Conjecture Concerning Principal G-Bundles Over Semilocal Dedekind Domains
- Authors: Panin I.A.1, Stavrova A.K.2
-
Affiliations:
- St.Petersburg Department of the Steklov Mathematical Institute
- St.Petersburg State University
- Issue: Vol 222, No 4 (2017)
- Pages: 453-462
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/239232
- DOI: https://doi.org/10.1007/s10958-017-3316-5
- ID: 239232
Cite item
Abstract
Let R be a semilocal Dedekind domain, and let K be the field of fractions of R. Let G be a reductive semisimple simply connected R-group scheme such that every semisimple normal R-subgroup scheme of G contains a split R-torus \( {\mathbb{G}}_{m,R} \). It is proved that the kernel of the map
\( {H}_{\overset{\prime }{e}t}^1\left(R,\kern0.5em G\right)\to {H}_{\overset{\prime }{e}t}^1\left(K,\kern0.5em G\right) \)![]()
induced by the inclusion of R into K is trivial. This result partially extends the Nisnevich theorem.About the authors
I. A. Panin
St.Petersburg Department of the Steklov Mathematical Institute
Author for correspondence.
Email: paniniv@gmail.com
Russian Federation, St.Petersburg
A. K. Stavrova
St.Petersburg State University
Email: paniniv@gmail.com
Russian Federation, St.Petersburg
Supplementary files
