Spherical Transformation of Generalized Poisson Shift and Properties of Weighted Lebesgue Classes of Functions


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We obtain a formula for the spherical transformation of generalized shift of a function depending on multiple-axial spherical symmetry. This formula shows that the generalized shift order depends on the dimension of the spherically symmetric part of the Euclidean space. The formula can be used for reducing some problems in weighted function spaces to the case of function spaces without weight. For an example we prove the global continuity with respect to shift and show that functions of class \( {C_{ev}^{\infty}}_{,0} \) are dense in the weighted Lebesgue classes.

About the authors

L. N. Lyakhov

Voronezh State University

Author for correspondence.
Email: levnlya@mail.ru
Russian Federation, 1, Universitetskaya pl, Voronezh, 394006

S. A. Roshchupkin

I. A. Bunin Elets State University

Email: levnlya@mail.ru
Russian Federation, 28, Kommunarov Str., Lipetskaya obl., Elets, 399770

E. L. Sanina

Voronezh State University

Email: levnlya@mail.ru
Russian Federation, 1, Universitetskaya pl, Voronezh, 394006

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media, LLC