The Congruent Centralizer of the Horn–Sergeichuk Matrix
- Authors: Ikramov K.D.1
-
Affiliations:
- Moscow Lomonosov State University
- Issue: Vol 224, No 6 (2017)
- Pages: 883-889
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/239709
- DOI: https://doi.org/10.1007/s10958-017-3458-5
- ID: 239709
Cite item
Abstract
The paper describes the congruent centralizer of the matrix \( {\Delta}_n=\left(\begin{array}{llll}\hfill & \hfill & \hfill & 1\hfill \\ {}\hfill & \hfill & \dots \hfill & i\hfill \\ {}\hfill & 1\hfill & \dots \hfill & \hfill \\ {}1\hfill & i\hfill & \hfill & \hfill \end{array}\right) \), representing one of three blocks in the Horn–Sergeichuk canonical form, i.e., the set of matrices X such that X∗ΔnX = Δn.
About the authors
Kh. D. Ikramov
Moscow Lomonosov State University
Author for correspondence.
Email: ikramov@cs.msu.su
Russian Federation, Moscow
Supplementary files
