Liouville Integrable Generalized Billiard Flows and Poncelet Type Theorems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

“Glued geodesic flows” and, in particular, “generalized billiard flows” on Riemannian manifolds with boundary, and geodesic flows on piecewise smooth Riemannian manifolds are studied. We develop the approaches of Lazutkin (1993) and Tabachnikov (1993) for proving the Poncelet type closure theorems via applying the classical Liouville theorem to the billiard flow (respectively to the billiard map). We prove that the condition on the refraction/reflection law to respect the Huygens principle is not only sufficient, but also necessary for “local Liouville integrability” of the glued geodesic flow, more precisely for pairwise commutation of the “glued flows” corresponding to a maximal collection of local first integrals in involution homogeneous in momenta. A similar criterion for “local Liouville integrability” of the succession/billiard map is obtained.

作者简介

E. Kudryavtseva

Moscow State University

编辑信件的主要联系方式.
Email: eakudr@mech.math.msu.su
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017