Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the first-order symmetric system Jy − A(t)y = λΔ(t)y with n × n-matrix coefficients defined on an interval [a; b) with the regular endpoint a. It is assumed that the deficiency indices N± of the system satisfy the equality N_N+ = n. The main result is the parametrization of all pseudospectral functions σ(·) of any possible dimension n????≤ n in terms of a Nevanlinna parameter τ = {C0(λ),  C1(λ)}. Such parametrization is given by the linear-fractional transform

\( {m}_{\tau}\left(\uplambda \right)={\left({C}_0\left(\uplambda \right){w}_{11}\left(\uplambda \right)+{C}_1\left(\uplambda \right){w}_{21}\left(\uplambda \right)\right)}^{-1}\left({C}_0\left(\uplambda \right){w}_{12}\left(\uplambda \right)+{C}_1\left(\uplambda \right){w}_{22}\left(\uplambda \right)\right) \)

and the Stieltjes inversion formula for m???? (λ). We show that the matrix \( W\left(\uplambda \right)={\left({w}_{ij}\left(\uplambda \right)\right)}_{i,j=1}^2 \) has the properties similar to those of the resolvent matrix in the extension theory of symmetric operators. The obtained results develop the results by A. Sakhnovich; Arov and Dym; and Langer and Textorius.

Авторлар туралы

Vadim Mogilevskii

V.G. Korolenko Poltava National Pedagogical University

Хат алмасуға жауапты Автор.
Email: vadim.mogilevskii@gmail.com
Украина, Poltava

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018