Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index
- Авторлар: Mogilevskii V.1
-
Мекемелер:
- V.G. Korolenko Poltava National Pedagogical University
- Шығарылым: Том 229, № 1 (2018)
- Беттер: 51-84
- Бөлім: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/240371
- DOI: https://doi.org/10.1007/s10958-018-3662-y
- ID: 240371
Дәйексөз келтіру
Аннотация
We consider the first-order symmetric system Jy′ − A(t)y = λΔ(t)y with n × n-matrix coefficients defined on an interval [a; b) with the regular endpoint a. It is assumed that the deficiency indices N± of the system satisfy the equality N_ ≤ N+ = n. The main result is the parametrization of all pseudospectral functions σ(·) of any possible dimension n????≤ n in terms of a Nevanlinna parameter τ = {C0(λ), C1(λ)}. Such parametrization is given by the linear-fractional transform
and the Stieltjes inversion formula for m???? (λ). We show that the matrix \( W\left(\uplambda \right)={\left({w}_{ij}\left(\uplambda \right)\right)}_{i,j=1}^2 \) has the properties similar to those of the resolvent matrix in the extension theory of symmetric operators. The obtained results develop the results by A. Sakhnovich; Arov and Dym; and Langer and Textorius.
Авторлар туралы
Vadim Mogilevskii
V.G. Korolenko Poltava National Pedagogical University
Хат алмасуға жауапты Автор.
Email: vadim.mogilevskii@gmail.com
Украина, Poltava
Қосымша файлдар
