Restoration of the Initial Data in the Problem for a Diffusion Equation with Fractional Derivative with Respect to Time
- Authors: Lopushans’ka H.P.1, М’yaus О.М.2
-
Affiliations:
- Franko L’viv National University
- “L’vivs’ka Politekhnika” National University
- Issue: Vol 229, No 2 (2018)
- Pages: 187-199
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/240400
- DOI: https://doi.org/10.1007/s10958-018-3670-y
- ID: 240400
Cite item
Abstract
We prove the correctness of the inverse problem of finding a pair of functions: the classical solution u(x,t) of the first boundary-value problem for a linear diffusion equation with regularized fractional derivative of order α ∈ (1, 2) with respect to time in a rectangular domain (0, ℓ) × (0, t0] and unknown initial values of the function u(x,t) for the case of additionally given values of the function at a certain fixed time t0 .
About the authors
H. P. Lopushans’ka
Franko L’viv National University
Email: Jade.Santos@springer.com
Ukraine, Lviv
О. М. М’yaus
“L’vivs’ka Politekhnika” National University
Email: Jade.Santos@springer.com
Ukraine, Lviv
Supplementary files
