Conditions of Asymptotic Normality of One-Step M-Estimators
- Authors: Linke Y.Y.1,2, Sakhanenko A.I.1,2
-
Affiliations:
- Sobolev Institute of Mathematics SB RAS
- Novosibirsk State University
- Issue: Vol 230, No 1 (2018)
- Pages: 95-111
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/240625
- DOI: https://doi.org/10.1007/s10958-018-3730-3
- ID: 240625
Cite item
Abstract
In the case of independent identically distributed observations, we study the asymptotic properties of one-step M-estimators served as explicit approximations of consistent M-estimators. We find rather general conditions for the asymptotic normality of one-step M-estimators. We consider Fisher’s approximations of consistent maximum likelihood estimators and find general conditions guaranteeing the asymptotic normality of the Fisher estimators even in the case where maximum likelihood estimators do not necessarily exist or are not necessarily consistent.
About the authors
Yu. Yu. Linke
Sobolev Institute of Mathematics SB RAS; Novosibirsk State University
Author for correspondence.
Email: linke@math.nsc.ru
Russian Federation, 4, Akad. Koptyuga pr., Novosibirsk, 630090; 1, Pirogova St., Novosibirsk, 630090
A. I. Sakhanenko
Sobolev Institute of Mathematics SB RAS; Novosibirsk State University
Email: linke@math.nsc.ru
Russian Federation, 4, Akad. Koptyuga pr., Novosibirsk, 630090; 1, Pirogova St., Novosibirsk, 630090
Supplementary files
