Conditions of Asymptotic Normality of One-Step M-Estimators


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the case of independent identically distributed observations, we study the asymptotic properties of one-step M-estimators served as explicit approximations of consistent M-estimators. We find rather general conditions for the asymptotic normality of one-step M-estimators. We consider Fisher’s approximations of consistent maximum likelihood estimators and find general conditions guaranteeing the asymptotic normality of the Fisher estimators even in the case where maximum likelihood estimators do not necessarily exist or are not necessarily consistent.

About the authors

Yu. Yu. Linke

Sobolev Institute of Mathematics SB RAS; Novosibirsk State University

Author for correspondence.
Email: linke@math.nsc.ru
Russian Federation, 4, Akad. Koptyuga pr., Novosibirsk, 630090; 1, Pirogova St., Novosibirsk, 630090

A. I. Sakhanenko

Sobolev Institute of Mathematics SB RAS; Novosibirsk State University

Email: linke@math.nsc.ru
Russian Federation, 4, Akad. Koptyuga pr., Novosibirsk, 630090; 1, Pirogova St., Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature