Finite-Difference Methods for Fractional Differential Equations of Order 1/2
- Авторы: Kokurin M.Y.1, Piskarev S.I.2,3, Spreafico M.4
-
Учреждения:
- Department of Physics and Mathematics, Mari State University
- Scientific Research Computer Center, M. V. Lomonosov Moscow State University
- Russian Institute for Scientific and Technical Information
- Department of Mathematics and Physics, Instituto Nazionale di Fisica Nucleare
- Выпуск: Том 230, № 6 (2018)
- Страницы: 950-960
- Раздел: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/241062
- DOI: https://doi.org/10.1007/s10958-018-3800-6
- ID: 241062
Цитировать
Аннотация
In this work, we study approximations of solutions of fractional differential equations of order 1/2. We present a new method of approximation and obtain the order of convergence. The presentation is given within the abstract framework of a semidiscrete approximation scheme, which includes finite-element methods, finite-difference schemes, and projection methods.
Об авторах
M. Kokurin
Department of Physics and Mathematics, Mari State University
Автор, ответственный за переписку.
Email: kokurinm@yandex.ru
Россия, Yoshkar-Ola
S. Piskarev
Scientific Research Computer Center, M. V. Lomonosov Moscow State University; Russian Institute for Scientific and Technical Information
Email: kokurinm@yandex.ru
Россия, Moscow; Moscow
M. Spreafico
Department of Mathematics and Physics, Instituto Nazionale di Fisica Nucleare
Email: kokurinm@yandex.ru
Италия, Lecce
Дополнительные файлы
