On a product of the inner radii of symmetric multiply connected domains
- Authors: Zabolotnyi Y.V.1, Vyhivska L.V.1
-
Affiliations:
- Institute of Mathematics of the NAS of Ukraine
- Issue: Vol 231, No 1 (2018)
- Pages: 101-109
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/241093
- DOI: https://doi.org/10.1007/s10958-018-3808-y
- ID: 241093
Cite item
Abstract
The article is devoted to the study of a quite general problem of the geometric theory of functions on an extreme decomposition of the complex plane. The problem of maximum of the functional
where γ ∈ (0, 1], n ≥ 2, a0 = 0,\( \left|{a}_k\right|=1,k=\overline{1,n},\kern0.5em {a}_k\in {B}_k\subset \overline{\mathrm{C}},k=\overline{0,n},{\left\{{B}_k\right\}}_{k=0}^n \) are pairwise disjoint domains, \( {\left\{{B}_k\right\}}_{k=0}^n \) are symmetric domains with respect to the unit circle, and r(B, a) is the inner radius of the domain B ⊂ \( \overline{\mathrm{C}} \) relative to the point a ∈ B, is considered.
About the authors
Yaroslav V. Zabolotnyi
Institute of Mathematics of the NAS of Ukraine
Author for correspondence.
Email: yaroslavzabolotnii@gmail.com
Ukraine, Kiev
Liudmyla V. Vyhivska
Institute of Mathematics of the NAS of Ukraine
Email: yaroslavzabolotnii@gmail.com
Ukraine, Kiev
Supplementary files
