Regularity of Maximum Distance Minimizers


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study properties of sets having the minimum length (one-dimensional Hausdorff measure) in the class of closed connected sets Σ ⊂ ℝ2 satisfying the inequality maxyϵM dist (y, Σ) ≤ r for a given compact set M ⊂ ℝ2 and given r > 0. Such sets play the role of the shortest possible pipelines arriving at a distance at most r to every point of M where M is the set of customers of the pipeline.

In this paper, it is announced that every maximum distance minimizer is a union of finitely many curves having one-sided tangent lines at every point. This shows that a maximum distance minimizer is isotopic to a finite Steiner tree even for a “bad” compact set M, which distinguishes it from a solution of the Steiner problem (an example of a Steiner tree with infinitely many branching points can be found in a paper by Paolini, Stepanov, and Teplitskaya). Moreover, the angle between these lines at each point of a maximum distance minimizer is at least 2π/3. Also, we classify the behavior of a minimizer Σ in a neighborhood of any point of Σ. In fact, all the results are proved for a more general class of local minimizers.

About the authors

Y. Teplitskaya

Chebyshev Laboratory, St.Petersburg State University

Author for correspondence.
Email: janejashka@gmail.com
Russian Federation, St.Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature