The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes
- Authors: Borisov D.I.1,2,3, Mukhametrakhimova A.I.2
-
Affiliations:
- Institute of Mathematics, USC RAS
- Bashkir State Pedagogical University
- University of Hradec Králové
- Issue: Vol 232, No 3 (2018)
- Pages: 283-298
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/241300
- DOI: https://doi.org/10.1007/s10958-018-3873-2
- ID: 241300
Cite item
Abstract
We consider a second order elliptic operator with variable coefficients in a multidimensional domain with a small hole and some classical boundary condition on the hole boundary. We show that the resolvent of this operator converges to the resolvent of the limit operator in the domain without holes in the sense of the norm of bounded operators acting from L2 to \( {W}_2^1 \). For the convergence rate we obtain sharp estimates relative to the smallness order.
About the authors
D. I. Borisov
Institute of Mathematics, USC RAS; Bashkir State Pedagogical University; University of Hradec Králové
Author for correspondence.
Email: borisovdi@yandex.ru
Russian Federation, 112, Chernyshevskii St., Ufa, 450008; 3a, October Revolution St., Ufa, 450000; 62, Rokitanského, Hradec Králové, 50003
A. I. Mukhametrakhimova
Bashkir State Pedagogical University
Email: borisovdi@yandex.ru
Russian Federation, 3a, October Revolution St., Ufa, 450000
Supplementary files
