Separating transformation and extremal problems on nonoverlapping simply connected domains
- Авторлар: Bakhtin A.K.1
-
Мекемелер:
- Institute of Mathematics of the NAS of Ukraine
- Шығарылым: Том 234, № 1 (2018)
- Беттер: 1-13
- Бөлім: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/241739
- DOI: https://doi.org/10.1007/s10958-018-3976-9
- ID: 241739
Дәйексөз келтіру
Аннотация
We consider the well-known problem of maximum of the functional
\( {I}_n\left(\upgamma \right)={r}^{\upgamma}\left({B}_0.0\right)\prod \limits_{k=1}^nr\left({B}_k,{a}_k\right), \)![]()
where B0, …, Bn are pairwise disjoint domains in \( \overline{\mathrm{\mathbb{C}}} \), a0 = 0, |ak| = 1, \( k=\overline{1,n} \), are different points of the circle, γ ∈ (0, n], and r(B, a) is the inner radius of the domain \( B\subset \overline{\mathrm{\mathbb{C}}} \) relative to the point a. In the case of simply connected domains for n=2, 3, and 4, we have obtained the solution of this problem for the maximum interval of values of the parameter γ.
Авторлар туралы
Aleksandr Bakhtin
Institute of Mathematics of the NAS of Ukraine
Хат алмасуға жауапты Автор.
Email: abahtin@imath.kiev.ua
Украина, Kiev
Қосымша файлдар
