Automorphisms of semigroups of k-linked upfamilies
- Authors: Gavrylkiv V.M.1
-
Affiliations:
- Vasyl Stefanyk Precarpathian National University
- Issue: Vol 234, No 1 (2018)
- Pages: 21-34
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/241743
- DOI: https://doi.org/10.1007/s10958-018-3978-7
- ID: 241743
Cite item
Abstract
A family \( \mathcal{A} \) of non-empty subsets of a set X is called an upfamily, if, for each set \( A\in \mathcal{A} \); any set B ⊃ A belongs to \( \mathcal{A} \). An upfamily \( \mathrm{\mathcal{L}} \) is called k-linked, if \( \cap \mathrm{\mathcal{F}}\ne \varnothing \) for any subfamily \( \mathrm{\mathcal{F}}\subset \mathrm{\mathcal{L}} \) of cardinality \( \left|\mathrm{\mathcal{F}}\right|\le k \). The extension Nk(X) consists of all k-linked upfamilies on X. Any associative binary operation ∗ : X × X → X can be extended to an associative binary operation ∗ : Nk(X) × Nk(X) → Nk(X). Here, we study automorphisms of the extensions of groups and finite monogenic semigroups. We also describe the automorphism groups of extensions of null semigroups, almost null semigroups, right zero semigroups and left zero semigroups.
Keywords
About the authors
Volodymyr M. Gavrylkiv
Vasyl Stefanyk Precarpathian National University
Author for correspondence.
Email: vgavrylkiv@gmail.com
Ukraine, Ivano-Frankivsk
Supplementary files
