Sharp Estimates of Linear Approximations by Nonperiodic Splines in Terms of Linear Combinations of Moduli of Continuity


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Assume that σ > 0, r, μ ???? ℕ, μ ≥ r + 1, r is odd, p ???? [1,+], and \( f\kern0.5em \in \kern0.5em {W}_p^{(r)}\left(\mathrm{\mathbb{R}}\right) \). We construct linear operators Xσ,r,μ whose values are splines of degree μ and of minimal defect with knots \( \frac{k\pi}{\sigma },k\in \mathrm{\mathbb{Z}} \), such that

\( {\displaystyle \begin{array}{l}{\left\Vert f-{X}_{\sigma, r,u}(f)\right\Vert}_p\le {\left(\frac{\pi }{\sigma}\right)}^r\left\{\frac{A_r,0}{2}\left.{\upomega}_1\right|{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p+\sum \limits_{v=1}^{u-r-1}{A}_{r,v}{\omega}_v{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p\right\}\\ {}\kern9em +{\left(\frac{\pi }{\sigma}\right)}^r\left(\frac{{\mathcal{K}}_r}{\pi^r}-\sum \limits_{v=0}^{u-r-1}{2}^v{A}_{r,v}\right){2}^{r-\mu }{\omega}_{\mu -r}{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p,\end{array}} \) where for p = 1, . . . ,+∞, the constants cannot be reduced on the class \( {W}_p^{(r)}\left(\mathrm{\mathbb{R}}\right) \). Here \( {\mathcal{K}}_r=\frac{4}{\pi}\sum \limits_{l=0}^{\infty}\frac{{\left(-1\right)}^{l\left(r+1\right)}}{{\left(2l+1\right)}^{r+1}} \) are the Favard constants, the constants Ar,ν are constructed explicitly, and ωv is a modulus of continuity of order ν. As a corollary, we get the sharp Jackson type inequality

\( {\left\Vert f-{X}_{\sigma, r,\mu }(f)\right\Vert}_p\le \frac{{\mathcal{K}}_r}{2{\sigma}^r}{\omega}_1{\left({f}^{(r)},\frac{\uppi}{\sigma}\right)}_p. \)

About the authors

O. L. Vinogradov

St. Petersburg State University

Author for correspondence.
Email: olvin@math.spbu.ru
Russian Federation, St. Petersburg

A. V. Gladkaya

St. Petersburg State University

Email: olvin@math.spbu.ru
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature