Maximum Principle for Nonlinear Parabolic Equations
- Authors: Kon’kov A.A.1
-
Affiliations:
- Moscow State University
- Issue: Vol 234, No 4 (2018)
- Pages: 423-439
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/241918
- DOI: https://doi.org/10.1007/s10958-018-4020-9
- ID: 241918
Cite item
Abstract
A maximum principle is obtained for solutions of parabolic equations of the form
\( \mathcal{L}u-{u}_t=f\left(x,t,u, Du\right), \)![]()
where
\( \mathcal{L}u=\sum \limits_{i,j}^n{a}_{ij}\left(x,t,u\right)\frac{\partial^2u}{\partial {x}_i\partial {x}_j}+\sum \limits_{i=1}^n{b}_i\left(x,t,u\right)\frac{\partial u}{\partial {x}_i}. \)![]()
About the authors
A. A. Kon’kov
Moscow State University
Author for correspondence.
Email: konkov@mech.math.msu.su
Russian Federation, Moscow
Supplementary files
