On Riesz Means of the Coefficients of Epstein’s Zeta Functions


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let rk(n) denote the number of lattice points on a k-dimensional sphere of radius \( \sqrt{n} \). The generating function

\( {\zeta}_k(s)=\sum \limits_{n=1}^{\infty }{r}_k(n){n}^{-s},\kern0.5em k\ge 2, \)

is Epstein’s zeta function. The paper considers the Riesz mean of the type

\( {D}_{\rho}\left(x;{\zeta}_3\right)=\frac{1}{\Gamma \left(\rho +1\right)}\sum \limits_{n\le x}{\left(x-n\right)}^{\rho }{r}_3(n), \)

where ρ > 0; the error term Δρ(x; ζ3) is defined by

\( {D}_{\rho}\left(x;{\zeta}_3\right)=\frac{\uppi^{3/2}{x}^{\rho +3/2}}{\Gamma \left(\rho +5/2\right)}+\frac{x^{\rho }}{\Gamma \left(\rho +1\right)}{\zeta}_3(0)+{\Delta}_{\rho}\left(x;{\zeta}_3\right). \)

K. Chandrasekharan and R. Narasimhan (1962, MR25#3911) proved that

\( {\Delta}_{\rho}\left(x;{\zeta}_3\right)=\Big\{{\displaystyle \begin{array}{ll}O\Big({x}^{1/2+\rho /2\Big)}& \left(\rho >1\right),\\ {}{\Omega}_{\pm}\left({x}^{1/2+\rho /2}\right)& \left(\rho \ge 0\right).\end{array}} \)

In the present paper, it is proved that

\( {\Delta}_{\rho}\left(x;{\zeta}_3\right)=\Big\{{\displaystyle \begin{array}{ll}O\left(x\log x\right)& \left(\rho =1\right),\\ {}O\left({x}^{2/3+\rho /3+\varepsilon}\right)& \left(1/2<\rho <1\right),\\ {}O\left({x}^{3/4+\rho /4+\varepsilon}\right)& \left(0<\rho \le 1/2\right),\end{array}} \)

and the Riesz means of the coefficients of ζk(s), k ≥ 4, are studied.

About the authors

O. M. Fomenko

St. Petersburg Department of the Steklov Mathematical Institute

Email: Jade.Santos@springer.com
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature