On Riesz Means of the Coefficients of Epstein’s Zeta Functions
- Authors: Fomenko O.M.1
-
Affiliations:
- St. Petersburg Department of the Steklov Mathematical Institute
- Issue: Vol 234, No 5 (2018)
- Pages: 737-749
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/241988
- DOI: https://doi.org/10.1007/s10958-018-4039-y
- ID: 241988
Cite item
Abstract
Let rk(n) denote the number of lattice points on a k-dimensional sphere of radius \( \sqrt{n} \). The generating function
\( {\zeta}_k(s)=\sum \limits_{n=1}^{\infty }{r}_k(n){n}^{-s},\kern0.5em k\ge 2, \)![]()
is Epstein’s zeta function. The paper considers the Riesz mean of the type
\( {D}_{\rho}\left(x;{\zeta}_3\right)=\frac{1}{\Gamma \left(\rho +1\right)}\sum \limits_{n\le x}{\left(x-n\right)}^{\rho }{r}_3(n), \)![]()
where ρ > 0; the error term Δρ(x; ζ3) is defined by
\( {D}_{\rho}\left(x;{\zeta}_3\right)=\frac{\uppi^{3/2}{x}^{\rho +3/2}}{\Gamma \left(\rho +5/2\right)}+\frac{x^{\rho }}{\Gamma \left(\rho +1\right)}{\zeta}_3(0)+{\Delta}_{\rho}\left(x;{\zeta}_3\right). \)![]()
K. Chandrasekharan and R. Narasimhan (1962, MR25#3911) proved that
\( {\Delta}_{\rho}\left(x;{\zeta}_3\right)=\Big\{{\displaystyle \begin{array}{ll}O\Big({x}^{1/2+\rho /2\Big)}& \left(\rho >1\right),\\ {}{\Omega}_{\pm}\left({x}^{1/2+\rho /2}\right)& \left(\rho \ge 0\right).\end{array}} \)![]()
In the present paper, it is proved that
\( {\Delta}_{\rho}\left(x;{\zeta}_3\right)=\Big\{{\displaystyle \begin{array}{ll}O\left(x\log x\right)& \left(\rho =1\right),\\ {}O\left({x}^{2/3+\rho /3+\varepsilon}\right)& \left(1/2<\rho <1\right),\\ {}O\left({x}^{3/4+\rho /4+\varepsilon}\right)& \left(0<\rho \le 1/2\right),\end{array}} \)![]()
and the Riesz means of the coefficients of ζk(s), k ≥ 4, are studied.
About the authors
O. M. Fomenko
St. Petersburg Department of the Steklov Mathematical Institute
Email: Jade.Santos@springer.com
Russian Federation, St. Petersburg
Supplementary files
