Turán-Type Results for Distance Graphs in an Infinitesimal Plane Layer
- Authors: Shabanov L.E.1
-
Affiliations:
- Moscow Institute of Physics and Technology
- Issue: Vol 236, No 5 (2019)
- Pages: 554-578
- Section: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242267
- DOI: https://doi.org/10.1007/s10958-018-4133-1
- ID: 242267
Cite item
Abstract
In this paper, we obtain a lower bound on the number of edges in a unit distance graph Γ in an infinitesimal plane layer ℝ2 × [0, ε]d, which relates the number of edges e(Γ), the number of vertices ν(Γ), and the independence number α(Γ). Our bound \( e\left(\varGamma \right)\ge \frac{19\nu \left(\varGamma \right)-50\alpha \left(\varGamma \right)}{3} \) is a generalization of a previous bound for distance graphs in the plane and a strong improvement of Turán’s bound in the case where \( \frac{1}{5}\le \frac{\alpha \left(\varGamma \right)}{v\left(\varGamma \right)}\le \frac{2}{7} \).
About the authors
L. E. Shabanov
Moscow Institute of Physics and Technology
Author for correspondence.
Email: shabanovlev94@gmail.com
Russian Federation, Dolgoprudny
Supplementary files
