Gaussian Approximation Numbers and Metric Entropy
- 作者: Kühn T.1, Linde W.2
-
隶属关系:
- Universität Leipzig
- University of Delaware
- 期: 卷 238, 编号 4 (2019)
- 页面: 471-483
- 栏目: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242546
- DOI: https://doi.org/10.1007/s10958-019-04251-8
- ID: 242546
如何引用文章
详细
The aim of this paper is to survey properties of Gaussian approximation numbers. We state the basic relations between these numbers and other s-numbers as, e.g., entropy, approximation, or Kolmogorov numbers. Furthermore, we fill a gap and prove new two-sided estimates in the case of operators with values in a K-convex Banach space. In the final section, we apply relations between Gaussian and other s-numbers to the d-dimensional integration operator defined on L2[0, 1]d.
作者简介
T. Kühn
Universität Leipzig
编辑信件的主要联系方式.
Email: kuehn@math.uni-leipzig.de
德国, Leipzig
W. Linde
University of Delaware
Email: kuehn@math.uni-leipzig.de
美国, Newark, DE
补充文件
