Gaussian Approximation Numbers and Metric Entropy


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The aim of this paper is to survey properties of Gaussian approximation numbers. We state the basic relations between these numbers and other s-numbers as, e.g., entropy, approximation, or Kolmogorov numbers. Furthermore, we fill a gap and prove new two-sided estimates in the case of operators with values in a K-convex Banach space. In the final section, we apply relations between Gaussian and other s-numbers to the d-dimensional integration operator defined on L2[0, 1]d.

作者简介

T. Kühn

Universität Leipzig

编辑信件的主要联系方式.
Email: kuehn@math.uni-leipzig.de
德国, Leipzig

W. Linde

University of Delaware

Email: kuehn@math.uni-leipzig.de
美国, Newark, DE

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019