Comparison of Asymptotic and Numerical Approaches to the Study of the Resonant Tunneling in Two-Dimensional Symmetric Quantum Waveguides of Variable Cross-Sections


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The waveguide considered coincides with a strip having two narrows of width ε. An electron wave function satisfies the Dirichlet boundary value problem for the Helmholtz equation. The part of the waveguide between the narrows serves as a resonator, and conditions for the electron resonant tunneling may occur. In the paper, asymptotic formulas as ε → 0 for characteristics of the resonant tunneling are used. The asymptotic results are compared with the numerical ones obtained by approximate calculation of the scattering matrix for energies in the interval between the second and third thresholds. The comparison allows us to state an interval of ε, where the asymptotic and numerical approaches agree. The suggested methods can be applied to more complicated models than that considered in the paper. In particular, the same approach can be used for asymptotic and numerical analysis of the tunneling in three-dimensional quantum waveguides of variable cross-sections. Bibliography: 3 titles.

Sobre autores

M. Kabardov

St.Petersburg State University of Telecommunications

Autor responsável pela correspondência
Email: kabardov@bk.ru
Rússia, St.Petersburg

B. Plamenevskii

St.Petersburg State University

Email: kabardov@bk.ru
Rússia, St.Petersburg

O. Sarafanov

St.Petersburg State University

Email: kabardov@bk.ru
Rússia, St.Petersburg

N. Sharkova

St.Petersburg State University

Email: kabardov@bk.ru
Rússia, St.Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019