Comparison of Asymptotic and Numerical Approaches to the Study of the Resonant Tunneling in Two-Dimensional Symmetric Quantum Waveguides of Variable Cross-Sections


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The waveguide considered coincides with a strip having two narrows of width ε. An electron wave function satisfies the Dirichlet boundary value problem for the Helmholtz equation. The part of the waveguide between the narrows serves as a resonator, and conditions for the electron resonant tunneling may occur. In the paper, asymptotic formulas as ε → 0 for characteristics of the resonant tunneling are used. The asymptotic results are compared with the numerical ones obtained by approximate calculation of the scattering matrix for energies in the interval between the second and third thresholds. The comparison allows us to state an interval of ε, where the asymptotic and numerical approaches agree. The suggested methods can be applied to more complicated models than that considered in the paper. In particular, the same approach can be used for asymptotic and numerical analysis of the tunneling in three-dimensional quantum waveguides of variable cross-sections. Bibliography: 3 titles.

作者简介

M. Kabardov

St.Petersburg State University of Telecommunications

编辑信件的主要联系方式.
Email: kabardov@bk.ru
俄罗斯联邦, St.Petersburg

B. Plamenevskii

St.Petersburg State University

Email: kabardov@bk.ru
俄罗斯联邦, St.Petersburg

O. Sarafanov

St.Petersburg State University

Email: kabardov@bk.ru
俄罗斯联邦, St.Petersburg

N. Sharkova

St.Petersburg State University

Email: kabardov@bk.ru
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019