Comparison of Asymptotic and Numerical Approaches to the Study of the Resonant Tunneling in Two-Dimensional Symmetric Quantum Waveguides of Variable Cross-Sections
- Autores: Kabardov M.M.1, Plamenevskii B.A.2, Sarafanov O.V.2, Sharkova N.M.2
-
Afiliações:
- St.Petersburg State University of Telecommunications
- St.Petersburg State University
- Edição: Volume 238, Nº 5 (2019)
- Páginas: 641-651
- Seção: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242576
- DOI: https://doi.org/10.1007/s10958-019-04263-4
- ID: 242576
Citar
Resumo
The waveguide considered coincides with a strip having two narrows of width ε. An electron wave function satisfies the Dirichlet boundary value problem for the Helmholtz equation. The part of the waveguide between the narrows serves as a resonator, and conditions for the electron resonant tunneling may occur. In the paper, asymptotic formulas as ε → 0 for characteristics of the resonant tunneling are used. The asymptotic results are compared with the numerical ones obtained by approximate calculation of the scattering matrix for energies in the interval between the second and third thresholds. The comparison allows us to state an interval of ε, where the asymptotic and numerical approaches agree. The suggested methods can be applied to more complicated models than that considered in the paper. In particular, the same approach can be used for asymptotic and numerical analysis of the tunneling in three-dimensional quantum waveguides of variable cross-sections. Bibliography: 3 titles.
Sobre autores
M. Kabardov
St.Petersburg State University of Telecommunications
Autor responsável pela correspondência
Email: kabardov@bk.ru
Rússia, St.Petersburg
B. Plamenevskii
St.Petersburg State University
Email: kabardov@bk.ru
Rússia, St.Petersburg
O. Sarafanov
St.Petersburg State University
Email: kabardov@bk.ru
Rússia, St.Petersburg
N. Sharkova
St.Petersburg State University
Email: kabardov@bk.ru
Rússia, St.Petersburg
Arquivos suplementares
