Weak Solutions of Hopf Type to 2D Maxwell Flows with Infinite Number of Relaxation Times
- 作者: Karazeeva N.A.1
-
隶属关系:
- St. Petersburg Department of the Steklov Mathematical Institute, RAS
- 期: 卷 238, 编号 5 (2019)
- 页面: 652-657
- 栏目: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242578
- DOI: https://doi.org/10.1007/s10958-019-04264-3
- ID: 242578
如何引用文章
详细
A system of equations describing the motion of fluids of Maxwell type is considered:
\( \frac{\partial }{\partial t}\upsilon +\upsilon \cdot \nabla \upsilon -\underset{0}{\overset{t}{\int }}K\left(t-\tau \right) d\tau +\nabla p=f\left(x,t\right),\kern0.5em di\upsilon\;\upsilon =0. \)![]()
Here K(t) is an exponential series \( K(t)=\sum \limits_{s=1}^{\infty }{\beta}_s{e}^{-{\alpha}_st} \). The existence of a weak solution for the initial boundary value problem
\( {\left.\begin{array}{ccc}\upsilon \left(x,0\right)={\upsilon}_0(x),& {\left.\upsilon \cdot n\right|}_{\partial \varOmega }=0,& rot\end{array}\;\upsilon \right|}_{\partial \varOmega }=0 \)![]()
is proved.
作者简介
N. Karazeeva
St. Petersburg Department of the Steklov Mathematical Institute, RAS
编辑信件的主要联系方式.
Email: karazeev@pdmi.ras.ru
俄罗斯联邦, St. Petersburg
补充文件
