🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On an Inverse Dynamic Problem for the Wave Equation with a Potential on a Real Line


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The inverse dynamic problem for the wave equation with a potential on a real line is considered. The forward initial-boundary value problem is set up with the help of boundary triplets. As an inverse data, an analog of the response operator (dynamic Dirichlet-to-Neumann map) is used. Equations of the inverse problem are derived; also, a relationship between the dynamic inverse problem and the spectral inverse problem from a matrix-valued measure is pointed out.

About the authors

A. S. Mikhaylov

St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg State University

Author for correspondence.
Email: mikhaylov@pdmi.ras.ru
Russian Federation, St.Petersburg

V. S. Mikhaylov

St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg State University

Email: mikhaylov@pdmi.ras.ru
Russian Federation, St.Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature