Perturbation of Threshold of the Essential Spectrum of the Schrödinger Operator on the Simplest Graph with a Small Edge
- 作者: Borisov D.I.1,2,3, Konyrkulzhaeva M.N.4
-
隶属关系:
- Institute of Mathematics, UFRC RAS
- Bashkir State Pedagogical University
- University of Hradec Králové
- Al-Farabi Kazakh National University
- 期: 卷 239, 编号 3 (2019)
- 页面: 248-267
- 栏目: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242652
- DOI: https://doi.org/10.1007/s10958-019-04302-0
- ID: 242652
如何引用文章
详细
On a star graph consisting of two infinite edges and one small edge, we consider the Schrödinger operators with piecewise-constant potentials on the infinite edges and with a singular potential on the small edge respectively. A δ′-interaction is given at the interior vertex of the graph, and the Dirichlet or Neumann condition is imposed at the boundary vertex of the small edge. We determine the limit boundary conditions, obtain two-term asymptotics for the resolvents in the operator norm and error estimates. The phenomenon of isolated eigenvalues emerging from the threshold of the essential spectrum is discussed. We establish efficient and easily verified sufficient conditions for the existence or absence of such eigenvalues. We establish the holomorphic dependence of the appeared eigenvalues on the edge length and write explicitly the first terms of the Taylor expansions of such eigenvalues.
作者简介
D. Borisov
Institute of Mathematics, UFRC RAS; Bashkir State Pedagogical University; University of Hradec Králové
编辑信件的主要联系方式.
Email: borisovdi@yandex.ru
俄罗斯联邦, 112, Chernyshevskii St., Ufa, 450008; 3a, October Revolution St., Ufa, 450000; 62, Rokitanského, Hradec Králové, 50003
M. Konyrkulzhaeva
Al-Farabi Kazakh National University
Email: borisovdi@yandex.ru
哈萨克斯坦, 71, al-Farabi Ave., Almaty, 050040
补充文件
