Perturbation of Threshold of the Essential Spectrum of the Schrödinger Operator on the Simplest Graph with a Small Edge


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

On a star graph consisting of two infinite edges and one small edge, we consider the Schrödinger operators with piecewise-constant potentials on the infinite edges and with a singular potential on the small edge respectively. A δ′-interaction is given at the interior vertex of the graph, and the Dirichlet or Neumann condition is imposed at the boundary vertex of the small edge. We determine the limit boundary conditions, obtain two-term asymptotics for the resolvents in the operator norm and error estimates. The phenomenon of isolated eigenvalues emerging from the threshold of the essential spectrum is discussed. We establish efficient and easily verified sufficient conditions for the existence or absence of such eigenvalues. We establish the holomorphic dependence of the appeared eigenvalues on the edge length and write explicitly the first terms of the Taylor expansions of such eigenvalues.

作者简介

D. Borisov

Institute of Mathematics, UFRC RAS; Bashkir State Pedagogical University; University of Hradec Králové

编辑信件的主要联系方式.
Email: borisovdi@yandex.ru
俄罗斯联邦, 112, Chernyshevskii St., Ufa, 450008; 3a, October Revolution St., Ufa, 450000; 62, Rokitanského, Hradec Králové, 50003

M. Konyrkulzhaeva

Al-Farabi Kazakh National University

Email: borisovdi@yandex.ru
哈萨克斯坦, 71, al-Farabi Ave., Almaty, 050040

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019