Algebras of Projectors and Mutually Unbiased Bases in Dimension 7
- Авторы: Zhdanovskiy I.Y.1,2, Kocherova A.S.1
-
Учреждения:
- Moscow Institute of Physics and Technology (State University)
- National Research University “High School of Economics, Laboratory of Algebraic Geometry
- Выпуск: Том 241, № 2 (2019)
- Страницы: 125-157
- Раздел: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242868
- DOI: https://doi.org/10.1007/s10958-019-04413-8
- ID: 242868
Цитировать
Аннотация
We apply methods of the representation theory, combinatorial algebra, and noncommutative geometry to various problems of quantum tomography. We introduce the algebra of projectors that satisfy a certain commutation relation, examine this relation by combinatorial methods, and develop the representation theory of this algebra. We also present a geometrical interpretation of our problem and apply the results obtained to the description of the Petrescu family of mutually unbiased bases in dimension 7.
Об авторах
I. Zhdanovskiy
Moscow Institute of Physics and Technology (State University); National Research University “High School of Economics, Laboratory of Algebraic Geometry
Автор, ответственный за переписку.
Email: ijdanov@mail.ru
Россия, Moscow; Moscow
A. Kocherova
Moscow Institute of Physics and Technology (State University)
Email: ijdanov@mail.ru
Россия, Moscow
Дополнительные файлы
