Algorithms for Wavelet Decomposition of of the Space of Hermite Type Splines
- Авторлар: Dem’yanovich Y.K.1
-
Мекемелер:
- St. Petersburg State University
- Шығарылым: Том 242, № 1 (2019)
- Беттер: 133-148
- Бөлім: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242959
- DOI: https://doi.org/10.1007/s10958-019-04470-z
- ID: 242959
Дәйексөз келтіру
Аннотация
For the space of (not necessarily polynomial) Hermite type splines we develop algorithms for constructing the spline-wavelet decomposition provided that an arbitrary coarsening of a nonuniform spline-grid is a priori given. The construction is based on approximate relations guaranteeing the asymptotically optimal (with respect to the N-diameter of standard compact sets) approximate properties of this decomposition. We study the structure of restriction and extension matrices and prove that each of these matrices is the one-sided inverse of the transposed other. We propose the decomposition and reconstruction algorithms consisting of a small number of arithmetical actions.
Авторлар туралы
Yu. Dem’yanovich
St. Petersburg State University
Хат алмасуға жауапты Автор.
Email: y.demjanovich@spbu.ru
Ресей, 28, Universitetskii pr., Petrodvorets, St. Petersburg, 198504
Қосымша файлдар
