Differentiability Properties of the Symbol of a Generalized Riesz Potential with Homogeneous Characteristic
- Авторы: Lanzara F.1, Maz’ya V.2,3
-
Учреждения:
- Sapienza University of Rome
- University of Linköping
- Sweden RUDN University
- Выпуск: Том 242, № 2 (2019)
- Страницы: 200-213
- Раздел: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242967
- DOI: https://doi.org/10.1007/s10958-019-04474-9
- ID: 242967
Цитировать
Аннотация
Let f be a positive homogeneous function of degree 0 defined on the sphere Σ of the space ℝn, and let Φα be the symbol of the integral operator
with 0 < α < n. We study differentiability properties of the restriction of Φα to the unit sphere Σ in the spaces \( {H}_p^l\left(\Sigma \right) \) for p ∈ (1,∞), where \( {H}_p^l\left(\Sigma \right) \) denotes the space of Bessel potentials with the norm \( {\left\Vert f\right\Vert}_{H_p^l\left(\Sigma \right)}={\left\Vert {\left(\delta +I\right)}^{l/2}f\right\Vert}_{L_p\left(\Sigma \right)} \) and δ is the Beltrami operator on the sphere. We prove that if f ∈ Lp(Σ), then \( {\left.{\Phi}_{\alpha}\right|}_{\Sigma}\in {H}_p^l\left(\Sigma \right) \) for any l ≤ n/2 − α − |p−1 − 2−1|(n − 2). Conversely, if \( {\left.{\Phi}_{\alpha}\right|}_{\Sigma}\in {H}_p^l\left(\Sigma \right) \) with |l ≥ n/2 − α+|p−1 − 2−1|(n − 2), then f ∈ Lp(Σ). The results are sharp.
Об авторах
F. Lanzara
Sapienza University of Rome
Email: vladimir.mazya@liu.se
Италия, 2, Piazzale Aldo Moro, Rome, 00185
V. Maz’ya
University of Linköping; Sweden RUDN University
Автор, ответственный за переписку.
Email: vladimir.mazya@liu.se
Швеция, Linköping, 581 83; 6 Miklukho-Maklay St, Moscow, 117198
Дополнительные файлы
