Finite Spaces Pretangent to Metric Spaces at Infinity
- Autores: Bilet V.1, Dovgoshey O.1
-
Afiliações:
- Institute of Applied Mathematics and Mechanics of the NASU
- Edição: Volume 242, Nº 3 (2019)
- Páginas: 360-380
- Seção: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242982
- DOI: https://doi.org/10.1007/s10958-019-04483-8
- ID: 242982
Citar
Resumo
Let X be an unbounded metric space, and let \( \tilde{r} \) be a sequence of positive real numbers tending to infinity. We define the pretangent space \( {\Omega}_{\infty, \tilde{r}}^X \) to X at infinity as a metric space whose points are the equivalence classes of sequences \( \tilde{x}\subset X \) which tend to infinity with the rate \( \tilde{r} \). It is proved that all pretangent spaces are complete and, for every finite metric space Y, there is an unbounded metric space X such that Y and \( {\Omega}_{\infty, \tilde{r}}^X \) are isometric for some \( \tilde{r} \). The finiteness conditions of \( {\Omega}_{\infty, \tilde{r}}^X \) are completely described.
Sobre autores
Viktoriia Bilet
Institute of Applied Mathematics and Mechanics of the NASU
Autor responsável pela correspondência
Email: viktoriiabilet@gmail.com
Ucrânia, Slov’yansk
Oleksiy Dovgoshey
Institute of Applied Mathematics and Mechanics of the NASU
Email: viktoriiabilet@gmail.com
Ucrânia, Slov’yansk
Arquivos suplementares
