Unimodularity of Induced Toric Tilings


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Induced tilings \( \mathcal{T}=\mathcal{T}\left|{}_{\mathrm{Kr}}\right. \) of the d-dimensional torus ????d generated by an embedded karyon Kr are considered. The operations of differentiation \( \sigma :\mathcal{T}\to {\mathcal{T}}^{\sigma } \) are defined; as a result, the induced tilings \( {\mathcal{T}}^{\sigma }=\mathcal{T}\left|{}_{{\mathrm{Kr}}^{\sigma }}\right. \) of the same torus ????d, generated by the derivative karyon Krσ, are obtained. In terms of karyons Kr, the differentiations σ reduce to a combination of geometric transformations of the space ℝd. It is proved that if the karyon Kr is unimodular, then it generates an induced tiling \( \mathcal{T}=\mathcal{T}\left|{}_{\mathrm{Kr}}\right. \), and the derivative karyons Krσ are unimodular as well, whence the corresponding derivative tilings \( {\mathcal{T}}^{\sigma }=\mathcal{T}\left|{}_{{\mathrm{Kr}}^{\sigma }}\right. \) exist. Using unimodular karyons, one can construct an infinite family of induced tilings \( \mathcal{T}=\mathcal{T} \) (α, Kr*), depending on a shift vector α of the torus ????d and an initial karyon Kr*. Two algorithms for constructing such unimodular karyons Kr* are presented.

Sobre autores

V. Zhuravlev

V. A. Steklov Mathematical Institute of the Russian Academy of Sciences; Vlalimir State University

Autor responsável pela correspondência
Email: vzhuravlev@mail.ru
Rússia, Moscow; Vladimir

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019