Unimodularity of Induced Toric Tilings
- Autores: Zhuravlev V.G.1,2
-
Afiliações:
- V. A. Steklov Mathematical Institute of the Russian Academy of Sciences
- Vlalimir State University
- Edição: Volume 242, Nº 4 (2019)
- Páginas: 509-530
- Seção: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/242998
- DOI: https://doi.org/10.1007/s10958-019-04493-6
- ID: 242998
Citar
Resumo
Induced tilings \( \mathcal{T}=\mathcal{T}\left|{}_{\mathrm{Kr}}\right. \) of the d-dimensional torus ????d generated by an embedded karyon Kr are considered. The operations of differentiation \( \sigma :\mathcal{T}\to {\mathcal{T}}^{\sigma } \) are defined; as a result, the induced tilings \( {\mathcal{T}}^{\sigma }=\mathcal{T}\left|{}_{{\mathrm{Kr}}^{\sigma }}\right. \) of the same torus ????d, generated by the derivative karyon Krσ, are obtained. In terms of karyons Kr, the differentiations σ reduce to a combination of geometric transformations of the space ℝd. It is proved that if the karyon Kr is unimodular, then it generates an induced tiling \( \mathcal{T}=\mathcal{T}\left|{}_{\mathrm{Kr}}\right. \), and the derivative karyons Krσ are unimodular as well, whence the corresponding derivative tilings \( {\mathcal{T}}^{\sigma }=\mathcal{T}\left|{}_{{\mathrm{Kr}}^{\sigma }}\right. \) exist. Using unimodular karyons, one can construct an infinite family of induced tilings \( \mathcal{T}=\mathcal{T} \) (α, Kr*), depending on a shift vector α of the torus ????d and an initial karyon Kr*. Two algorithms for constructing such unimodular karyons Kr* are presented.
Sobre autores
V. Zhuravlev
V. A. Steklov Mathematical Institute of the Russian Academy of Sciences; Vlalimir State University
Autor responsável pela correspondência
Email: vzhuravlev@mail.ru
Rússia, Moscow; Vladimir
Arquivos suplementares
