


Vol 216, No 4 (2016)
- Year: 2016
- Articles: 16
- URL: https://journal-vniispk.ru/1072-3374/issue/view/14752
Article
Problem of Elasticity and Plasticity for a Polygonal Plate Weakened by n Cyclic Symmetric Holes
Abstract
We consider a polygonal plate weakened by n cyclic symmetric holes in a stressed state whose plasticity region contains only contours of holes and is not spread inside the plate. We construct solutions of this problem and obtain the equation of unknown contours of holes.



Versions of the Characteristic Problem with Noncompact Support of Data
Abstract
In this paper, we propose nonlinear versions of the characteristics problem for nonlinear equations, which make it possible to define simultaneously regular solutions and their extension domains. The conditions of problems are set on nonintersecting arcs of curves that are characteristic for various families.



Some properties of “Bulky” Links Generated by Generalized Möbius–Listing Bodies GML4n
Abstract
In the present paper, we consider the “bulky knots” and “bulky links” that appear after cutting of generalized Möbius–Listing GML4n bodies (with corresponding radial cross sections square) along different generalized Möbius–Listing surfaces GML2n situated in it. The aim of this article is to examine the number and geometric structure of independent objects that appear after such a cutting process of GML4n bodies. In most cases, we are able to count the indices of the resulting mathematical objects according to the known tabulation for knots and links of small complexity.



Sum Range of a Quaternion Series
Abstract
In this paper, we obtain a result which implies, in particular, that for a quaternion z ∉ {−1, 1} with |z| = 1, the sum range of the series \( {\displaystyle \sum_n\frac{z^n}{n}} \) is a closed proper subfield of the division ring of quaternions ℍ isometrically isomorphic to the field of complex numbers ℂ.



The Quantum Group and Harper Equation on a Honeycomb Lattice
Abstract
The tight-binding model of quantum particle on a honeycomb lattice is investigated in the presence of homogeneous magnetic field. The one-particle Hamiltonian is expressed in terms of the generators of the quantum group Uq(sl2). The corresponding Harper equation is rewritten as a system of two coupled functional equations in the complex plane. The system is shown to exhibit certain symmetry that allows one to resolve the entanglement, and the basic single equation determining the eigenvalues and eigenstates is obtained. Equations specifying the roots of eigenstates in the complex plane are found.



Representation Formula for General Solution of a Homogeneous System of Differential Equations
Abstract
We consider the stationary oscillation case of the theory of linear thermoelasticity with microtemperatures of materials. The representation formula of a general solution of the homogeneous system of differential equations obtained in the paper is expressed by means of seven metaharmonic functions. These formulas are very convenient and useful in many particular problems for domains with concrete geometry. Here we demonstrate applications of these formulas to the Dirichlet- and Neumann-type boundary-value problems for a ball. Uniqueness theorems are proved. We construct explicit solutions in the form of absolutely and uniformly convergent series.



Explicit Solutions of Boundary-Value Problems of Thermoelasticity with Microtemperatures for a Half-Space
Abstract
We consider the statics case of the theory of linear thermoelasticity with microtemperatures materials. The representation formula of a general solution of the homogeneous system of differential equations obtained in this paper is expressed by means of four harmonic and three metaharmonic functions. These formulas are very convenient and useful in many particular problems for domains with concrete geometry. Here we demonstrare an application of these formulas to the III type boundary value problem for a half-space. Uniqueness theorems are proved. Solutions are obtained in quadratures.



Irreducible Generating Sets of Complete Semigroups of Unions Bx(D) Defined by Semilattices of Class Σ2(X, 4), Where |X| = 3
Abstract
In complete semigroups of unions Bx(D) defined by semilattices of class Σ2(X, 4), where |X| = 3, we select subsets of a certain type on which a binary equivalent relation is defined. By means of this relation, we describe irreducible generating sets of considered semigroups.



Mathematical Model of Social Educational Networks
Abstract
In this paper, we describe an educational social network. The mathematical model of this social network is proposed. We consider the following tools in the social network: instant messages, blocks, wiki-libraries, video conferences, document repositories, repository of training materials, and electronic courses.









On the Estimation of the Exponential Distribution of Parameters
Abstract
In the present paper, the problem of estimation of the exponential distribution of parameters is investigated.
In Sec. 1, the ordinary exponential distribution is considered, and the parameter λ is estimated by means of censored observations by the pseudomaximal likelihood method. It is shown that the estimator is asymptotically consistent and effective.
In Sec. 2, the problem of estimation of parameters of the truncated exponential distribution is considered using the maximal likelihood method. The existence and uniqueness of the solution corresponding to the likelihood equation are shown.
The practical application of the obtained results with the aid of computer realization is given. In particular, a sample of size n = 1000 is selected, which is distributed by the truncated exponential law. The sample mean \( \overline{x} \) = 1.3435 and the solution θ∗ = 2.004 of the corresponding likelihood control are obtained.



On the Set of Locally Convex Topologies Compatible with a Given Topology on a Vector Space: Cardinality Aspects
Abstract
For a topological vector space (X, τ), we consider the family LCT(X, τ) of all locally convex topologies defined on X, which give rise to the same continuous linear functionals as the original topology τ. We prove that for an infinite-dimensional reflexive Banach space (X, τ), the cardinality of LCT(X, τ) is at least \( \mathfrak{c} \).



Linear Mathematical Theory of Accelerated Life Testing
Abstract
Problems of accelerated life testing are formulated and the basic definitions are given. The notion of the so-called acceleration function is introduced. Using this notion, we define the integral time distribution function of no-failure operation of a piece of equipment. The linearity criterion is formulated for the acceleration function. Using the obtained relation, which is a generalization of the Palmgren–Miner rule, we work out the accelerated testing method for determining the reliability with the load increasing continuously or stepwise.



On a Realization of One Network Algorithm
Abstract
Among operation research problems, there exist practical problems that can be formulated as network models. Of the results of research of previous years, more than half of the problems on mathematic programming can be realized via network modeling. One of the important problems of network modeling is finding the shortest distance and its realization on a computer. Unlike the known algorithm of finding the shortest distance when we must adopt the formal sum U1 = 0 and minimizing sum on the following integrations, in the case discussed in this work we maximize the multiplication product and accordingly in the beginning we adopt the formal multiplication product of U1 = 1. In this work, one problem is solved via two different forms and methods, and an example of its corresponding realization on computer is provided.



On Idempotent Elements of The Semigroup of Binary Relations
Abstract
In the paper, we consider the complete semigroup of binary relations defined by semilattices of the class Σ3(X, 8). We give a full description of idempotent elements for the case where X is a finite set and Z7 ≠ Ø and obtain the formulas for the number of idempotent elements of the corresponding semigroup.


