Asymptotics of Traces of Paths in the Young and Schur Graphs


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let G be a graded graph with levels V0, V1, . . .. Fix m and choose a vertex v in Vn where n ≥ m. Consider the uniform measure on the paths from V0 to v. Each such path has a unique vertex at the level Vm, so a measure \( {\nu}_v^m \) on Vm is induced. It is natural to expect that these measures have a limit as the vertex v goes to infinity in some “regular” way. We prove this (and compute the limit) for the Young and Schur graphs, for which regularity is understood as follows: the fraction of boxes contained in the first row and the first column goes to 0. For the Young graph, this was essentially proved by Vershik and Kerov in 1981; our proof is more straightforward and elementary.

Авторлар туралы

F. Petrov

St. Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University

Хат алмасуға жауапты Автор.
Email: fedyapetrov@gmail.com
Ресей, St. Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019