Asymptotics of Traces of Paths in the Young and Schur Graphs


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let G be a graded graph with levels V0, V1, . . .. Fix m and choose a vertex v in Vn where n ≥ m. Consider the uniform measure on the paths from V0 to v. Each such path has a unique vertex at the level Vm, so a measure \( {\nu}_v^m \) on Vm is induced. It is natural to expect that these measures have a limit as the vertex v goes to infinity in some “regular” way. We prove this (and compute the limit) for the Young and Schur graphs, for which regularity is understood as follows: the fraction of boxes contained in the first row and the first column goes to 0. For the Young graph, this was essentially proved by Vershik and Kerov in 1981; our proof is more straightforward and elementary.

作者简介

F. Petrov

St. Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University

编辑信件的主要联系方式.
Email: fedyapetrov@gmail.com
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019