An Analog of the Hyperbolic Metric Generated by a Hilbert Space with the Schwarz–Pick Kernel


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is proved that a Hilbert function space on a set X with the Schwarz–Pick kernel (this is a wider class than the class of Hilbert spaces with the Nevanlinna–Pick kernel) generates a metric on the set X which is an analog of the hyperbolic metric in the unit disk. For a sequence satisfying an abstract Blaschke condition, it is proved that the associated infinite Blaschke product converges uniformly on any fixed bounded set and in the strong operator topology of the multiplier space. Bibliography: 8 titles.

Sobre autores

I. Videnskii

St.Petersburg State University

Autor responsável pela correspondência
Email: ilya.viden@gmail.com
Rússia, St.Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018