An Analog of the Hyperbolic Metric Generated by a Hilbert Space with the Schwarz–Pick Kernel


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is proved that a Hilbert function space on a set X with the Schwarz–Pick kernel (this is a wider class than the class of Hilbert spaces with the Nevanlinna–Pick kernel) generates a metric on the set X which is an analog of the hyperbolic metric in the unit disk. For a sequence satisfying an abstract Blaschke condition, it is proved that the associated infinite Blaschke product converges uniformly on any fixed bounded set and in the strong operator topology of the multiplier space. Bibliography: 8 titles.

作者简介

I. Videnskii

St.Petersburg State University

编辑信件的主要联系方式.
Email: ilya.viden@gmail.com
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018