An Analog of the Hyperbolic Metric Generated by a Hilbert Space with the Schwarz–Pick Kernel
- 作者: Videnskii I.V.1
-
隶属关系:
- St.Petersburg State University
- 期: 卷 229, 编号 5 (2018)
- 页面: 497-505
- 栏目: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/240470
- DOI: https://doi.org/10.1007/s10958-018-3692-5
- ID: 240470
如何引用文章
详细
It is proved that a Hilbert function space on a set X with the Schwarz–Pick kernel (this is a wider class than the class of Hilbert spaces with the Nevanlinna–Pick kernel) generates a metric on the set X which is an analog of the hyperbolic metric in the unit disk. For a sequence satisfying an abstract Blaschke condition, it is proved that the associated infinite Blaschke product converges uniformly on any fixed bounded set and in the strong operator topology of the multiplier space. Bibliography: 8 titles.
作者简介
I. Videnskii
St.Petersburg State University
编辑信件的主要联系方式.
Email: ilya.viden@gmail.com
俄罗斯联邦, St.Petersburg
补充文件
