Analytic in a Sector Resolving Families of Operators for Degenerate Evolution Fractional Equations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We introduce a class of pairs of operators defining a linear homogeneous degenerate evolution fractional differential equation in a Banach space. Reflexive Banach spaces are represented as the direct sums of the phase space of the equation and the kernel of the operator at the fractional derivative. In a sector of the complex plane containing the positive half-axis, we construct an analytic family of resolving operators that degenerate only on the kernel. The results are used in the study of the solvability of initial-boundary value problems for partial differential equations containing fractional time-derivatives and polynomials in the Laplace operator with respect to the spatial variable.

作者简介

V. Fedorov

Chelyabinsk State University

编辑信件的主要联系方式.
Email: kar@csu.ru
俄罗斯联邦, 129, Brat’ev Kashirinyh St., Chelyabinsk, 454021

E. Romanova

Chelyabinsk State University

Email: kar@csu.ru
俄罗斯联邦, 129, Brat’ev Kashirinyh St., Chelyabinsk, 454021

A. Debbouche

Université 8 Mai 1945

Email: kar@csu.ru
阿尔及利亚, Guelma, 24000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2017