Analytic in a Sector Resolving Families of Operators for Degenerate Evolution Fractional Equations
- Авторы: Fedorov V.E.1, Romanova E.A.1, Debbouche A.2
-
Учреждения:
- Chelyabinsk State University
- Université 8 Mai 1945
- Выпуск: Том 228, № 4 (2018)
- Страницы: 380-394
- Раздел: Article
- URL: https://journal-vniispk.ru/1072-3374/article/view/240256
- DOI: https://doi.org/10.1007/s10958-017-3629-4
- ID: 240256
Цитировать
Аннотация
We introduce a class of pairs of operators defining a linear homogeneous degenerate evolution fractional differential equation in a Banach space. Reflexive Banach spaces are represented as the direct sums of the phase space of the equation and the kernel of the operator at the fractional derivative. In a sector of the complex plane containing the positive half-axis, we construct an analytic family of resolving operators that degenerate only on the kernel. The results are used in the study of the solvability of initial-boundary value problems for partial differential equations containing fractional time-derivatives and polynomials in the Laplace operator with respect to the spatial variable.
Об авторах
V. Fedorov
Chelyabinsk State University
Автор, ответственный за переписку.
Email: kar@csu.ru
Россия, 129, Brat’ev Kashirinyh St., Chelyabinsk, 454021
E. Romanova
Chelyabinsk State University
Email: kar@csu.ru
Россия, 129, Brat’ev Kashirinyh St., Chelyabinsk, 454021
A. Debbouche
Université 8 Mai 1945
Email: kar@csu.ru
Алжир, Guelma, 24000
Дополнительные файлы
