Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 58, № 2 (2016)

Article

Main types of rare-metal mineralization in Karelia

Ivashchenko V.

Аннотация

Rare-metal mineralization in Karelia is represented by V, Be, U deposits and In, Re, Nb, Ta, Li, Ce, La, and Y occurrences, which are combined into 17 types of magmatic, pegmatite, albitite–greisen, hydrothermal–metasomatic, sedimentary, and epigenetic groups. The main vanadium resources are localized in the Onega ore district. These are deposits of the Padma group (556 kt) and the Pudozhgorsky complex (1.5 Mt). The REE occurrences are primarily characterized by Ce–La specialization. The perspective of HREE is related to the Eletozero–Tiksheozero alkaline and Salmi anorthosite–rapakivi granite complexes. Rare-metal pegmatites bear complex mineralization with insignificant low-grade resources. The Lobash and Jalonvaara porphyry Cu–Mo deposits are potential sources of rhenium: Re contents in molybdenite are 20–70 and 50–246 ppm and hypothetical resources are 12 and 7.5 t, respectively. The high-grade (∼100 ppm) and metallogenic potential of indium (∼2400 t) make the deposits of the Pitkäranta ore district leading in the category of Russian ore objects most prospective for indium. Despite the diverse rare-metal mineralization known in Karelia, the current state of this kind of mineral commodities at the world market leaves real metallogenic perspective only for V, U, Re, In, and Nb.

Geology of Ore Deposits. 2016;58(2):166-171
pages 166-171 views

Mineral resources of high-tech metals in Russia: State of the art and outlook

Bortnikov N., Volkov A., Galyamov A., Vikent’ev I., Aristov V., Lalomov A., Murashov K.

Аннотация

Seven main ore-forming systems—porphyry and epithermal; orogenic related to granitic intrusions; magmatic ultramafic; volcanic-hosted massive sulfide and volcanic–sedimentary; sedimentary basins; related to alkaline magmatic activity; and placers and weathering mantles—are sources of high-tech critical metals. The following promising types of ore deposits containing high-tech critical metals as by-products are recognized: Cu–Mo porphyry, Fe–Cu–Au and Pb–Zn skarn, base-metal epithermal, volcanic-hosted massive sulfide, base-metal stratiform, various tin deposits, and placers containing rare metals including REE. The mineral resources of critical metals in Russia are compared with those known in other countries. The contents of high-tech critical metals in ores of some noble-metal deposits of the Russian Northeast are reported. It is shown that the subsurface of Russia possesses considerable mineral resource potential for hightech critical metals, which allows new enterprises to be created or production of operating enterprises to increase.

Geology of Ore Deposits. 2016;58(2):83-103
pages 83-103 views

Advanced geological modeling of coastal–marine cassiterite placers based on data on deposits in Russia’S Eastern Arctic Region

Lalomov A., Tabolich S., Chefranov R.

Аннотация

A mathematical model of coastal–marine tin placers formed in the alongshore drift flow is developed using the mass balance method. The physical meaning of the coefficients included in the model is considered. Coastal–marine placers are quantitatively estimated. The simulation adequacy is confirmed by the data on coastal–marine tin-bearing placer deposits at the Pevek ore cluster (Chaun Bay, East Siberian Sea). We suggest that the obtained equations be used for surveying and exploration. Identified patterns are used to estimate the tin placer potential in one of the coastal areas in the Eastern Arctic Basin.

Geology of Ore Deposits. 2016;58(2):104-115
pages 104-115 views

Disseminated gold–sulfide mineralization at the Zhaima deposit, eastern Kazakhstan

Kovalev K., Kuzmina O., Dyachkov B., Vladimirov A., Kalinin Y., Naumov E., Kirillov M., Annikova I.

Аннотация

The Zhaima gold–sulfide deposit is located in the northwestern part of the West Kalba gold belt in eastern Kazakhstan. The mineralization is hosted in Lower Carboniferous volcanic and carbonate rocks formed under conditions of marginal-sea and island-arc volcanic activity. The paper considers the mineralogy and geochemistry of primary gold–sulfide ore and Au-bearing weathering crusts. Au-bearing arsenopyrite–pyrite mineralization formed during only one productive stage. Disseminated, stringer–disseminated, and massive rocks are enriched in Ti, Cr, V, Cu, and Ni, which correspond to the mafic profile of basement. The main ores minerals are represented by finely acicular arsenopyrite containing Au (up to few tens of ppm) and cubic and pentagonal dodecahedral pyrite with sporadic submicroscopic inclusions of native gold. The sulfur isotopic composition of sulfides is close to that of the meteoritic standard (δ34S =–0.2 to +0.2). The 40Ar/39Ar age of three sericite samples from ore veinlets corresponds to the Early Permian: 279 ± 3.3, 275.6 ± 2.9, and 272.2 ± 2.9 Ma. The mantle source of sulfur, ore geochemistry, and spatial compatibility of mineralization with basic dikes allow us to speak about the existence of deep fluid–magmatic systems apparently conjugate with the Tarim plume.

Geology of Ore Deposits. 2016;58(2):116-133
pages 116-133 views

Composition and genesis of the Konevinsky gold deposit, Eastern Sayan, Russia

Damdinov B., Zhmodik S., Roshchektaev P., Damdinova L.

Аннотация

The Konevinsky gold deposit in southeast Eastern Sayan is distinguished from most known deposits in this region (Zun-Kholba, etc.) by the geological setting and composition of mineralization. To elucidate the cause of the peculiar mineralization, we have studied the composition, formation conditions, and origin of this deposit, which is related to the Ordovician granitoid pluton 445–441 Ma in age cut by intermediate and basic dikes spatially associated with metavolcanic rocks of the Devonian–Carboniferous Ilei Sequence. Four mineral assemblages are recognized: (1) quartz–pyrite–molybdenite, (2) quartz–gold–pyrite, (3) gold–polysulfide, and (4) telluride. Certain indications show that the ore was formed as a result of the superposition of two distinct mineral assemblages differing in age. The first stage dated at ~440 Ma is related to intrusions generating Cu–Mo–Au porphyry mineralization and gold–polysulfide veins. The second stage is controlled by dikes pertaining to the Devonian–Carboniferous volcanic–plutonic association. The second stage is characterized by gain of Hg and Te and formation of gold–mercury–telluride paragenesis.

Geology of Ore Deposits. 2016;58(2):134-148
pages 134-148 views

Formation conditions of paleovalley uranium deposits hosted in upper Eocene–lower Oligocene rocks of Bulgaria

Vinokurov S., Strelkova E.

Аннотация

The uranium deposits of Bulgaria related to the Late Alpine tectonomagmatic reactivation are subdivided into two groups: exogenic–epigenetic paleovalley deposits related to the basins filled with upper Eocene–lower Oligocene volcanic–sedimentary rocks and the hydrothermal deposits hosted in the coeval depressions. The geological and lithofacies conditions of their localization, the epigenetic alteration of rocks, mineralogy and geochemistry of uranium ore are exemplified in thoroughly studied paleovalley deposits of the Maritsa ore district. Argumentation of the genetic concepts providing insights into both sedimentation–diagenetic and exogenic–epigenetic mineralization with development of stratal oxidation zones is discussed. A new exfiltration model has been proposed to explain the origin of the aforementioned deposits on the basis of additional analysis with consideration of archival factual data and possible causes of specific ningyoite uranium ore composition.

Geology of Ore Deposits. 2016;58(2):149-165
pages 149-165 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».