Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 59, Nº 1 (2017)

Article

Gold–quartz deposits of the Zhdaninsky ore–placer cluster, eastern Yakutia: Structural control and formation conditions

Aristov V., Babarina I., Grigor’eva A., Alekseev V., Prokof’ev V., Uzyunkoyan A., Zabolotskaya O., Titov S.

Resumo

Gold deposits and occurrences small in reserves and high in Au grade conventionally determine the line of prospecting in terrigenous sequences of the Verkhoyansk–Kolyma region. In this paper, the geological structure of such gold objects is considered with the example of the deposits and prospects making up the Zhdaninsky ore–placer cluster in the Republic of Sakha (Yakuia). From lithological, structural, and mineralogical–geochemical data, the formation conditions of ore-bearing complexes are specified, the geological evolution history of the northern Ol’chan Zone of the Kular–Nera Belt is reconstructed, and the zonal distribution of mineralization within the ore–placer cluster is revealed. The structural–compositional complexes were formed in the following succession: (1) sedimentation at the shelf of the passive margin accompanied by synsedimentation deformations; (2) metagenesis of sediments and the development of bedding-plane intraformational detachments of collision stage D1 under conditions of tangential compression and accompanied by the formation of carbon dioxide–aqueous metamorphic fluid at a temperature of 300°C and under a pressure of 1.4 kbar; (3) folding and faulting of orogenic stage D2 with the formation of synkinematic magmatic bodies, metasomatic alteration, and Au-bearig mineral assemblages. Small Au-bearing objects with veined mineralization and high Au grade are localized in structures of stage D2 transverse to bedding-plane schistosity S1. They form at the collision stage above intraformational detachment surfaces and are controlled by shear structures of the orogenic stage with misalignment of these deformations. The ore zoning is determined by the distribution of Co and Ni minerals and by variations in the anionic composition of ore (S, As, Sb).

Geology of Ore Deposits. 2017;59(1):68-101
pages 68-101 views

The Schlema–Alberoda five-element uranium deposit, Germany: An example of self-organizing hydrothermal system

Naumov G., Vlasov B., Golubev V., Mironova O.

Resumo

As a result of integrating geological, mineralogical, and geochemical data on the unique Schlema–Alberoda five-element uranium deposit situated in Federal Republic of Germany and explored in detail down to a depth of 2 km, it has been shown that its formation for more than 100 Ma has been caused by combination of internal and external factors. The latter comprise favorable metallogenic specialization of the region, injection of intrusive bodies bearing the necessary stock of energy, and periodic pulses of tectonic reactivation. The internal factors of self-development involve evolutionary processes, which occur in host rocks at the consecutive stages of prograde and retrograde metamorphism giving rise to alteration of rocks in consistence with physical and chemical laws at variable temperature and degree of system opening.

Geology of Ore Deposits. 2017;59(1):1-13
pages 1-13 views

Geology, composition, and physicochemical model of sparry magnesite deposits of the Southern Urals

Krupenin M., Kol’tsov A.

Resumo

The metasomatic nature of magnesite formation, sequence and timing of geological processes, and solution sources have been established by comprehensive geological and geochemical study of the typical Satka and Ismakaevo deposits of sparry magnesite in the South Ural province. The hydrothermal metasomatic formation of magnesite is related to injection of high-Mg evaporite brine into heated carbonate rocks within permeable rift zones. The numerical physicochemical simulation of solution–rock interaction allowed us to determine the necessary prerequisites for sparry magnesite formation: the occurrence of marine salt solutions with a high Mg/Ca ratio and heating of solutions before or during their interaction with host carbonate rocks. The contribution of compositionally various solution sources, the temperature variation regime, proportions of CO2 and H2S concentrations in solution created specific features of particular deposits.

Geology of Ore Deposits. 2017;59(1):14-35
pages 14-35 views

Formation of Pt-bearing Western Pana pluton on the Kola Peninsula: Fluid regime as deduced from helium and argon isotopic compositions

Nivin V., Rundqvist T.

Resumo

The distribution of He and Ar isotopes has been studied in 41 rock samples and seven monomineralic fractions from ore-bearing layered units and poorly differentiated host gabbronorite of the Western Pana mafic–ultramafic pluton on the Kola Peninsula. The gases assigned for mass-spectrometric analysis were released by means of whole-rock sample melting and by comminution mainly from fluid microinclusions. The data show that the present-day isotopic composition of noble gases in rocks from the pluton is caused by many factors: the degree of melt degassing, various concentrations and retention of the trapped isotopes, the contents of radioactive elements, and the generation and loss of radiogenic gases. The hypabyssal conditions of pluton formation facilitate the loss of primary mantle-derived volatile components and the dilution of magmatic fluid with near-surface paleometeoric waters containing air dissolved therein. The correlation of noble gas isotopes and ore-forming chemical elements does not suggest derivation of the latter from crustal material and evidences their mantle origin. Variations in the geochemical indices of the gas corroborate previously established or proposed multistage formation of the pluton, mainly, the autometamorphic character of postmagmatic processes and the participation of fluids in ore formation.

Geology of Ore Deposits. 2017;59(1):36-55
pages 36-55 views

Distribution of indium in ores of some base metal and tin–sulfide deposits in Siberia and the Russian Far East

Gaskov I., Vladimirov A., Khanchuk A., Pavlova G., Gvozdev V.

Resumo

The study of base-metal massive sulfide and tin–sulfide deposits in Siberia and the Russian Far East has revealed that the indium content in ores exceeding the average statistical value at similar deposits worldwide could be economically important. Sphalerite and chalcopyrite and chalcopyrite, bornite, and sphalerite are the major indium carriers in the base-metal massive sulfide and tin–sulfide ores, respectively. In addition, base-metal massive sulfide ores have high Cd, Ag, and Te contents, whereas tin–sulfide ores have elevated Ge, Ga, and Nb contents. This has stimulated the investment attractiveness of these deposits.

Geology of Ore Deposits. 2017;59(1):56-67
pages 56-67 views