Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 60, № 2 (2018)

Article

Fahlore and Sphalerite from the Darasun Gold Deposit in the Eastern Transbaikal Region, Russia: I. Mineral Assemblages and Intergrowths, Chemical Composition, and Its Evolution

Lyubimtseva N., Bortnikov N., Borisovsky S., Prokofiev V., Vikent’eva O.

Аннотация

The mineral assemblages, mode of occurrence, and chemical compositions of coexisting fahlore and sphalerite from the Darasun gold deposit have been described. Three generations of fahlore and three generations of sphalerite have been recognized. The FeS content in sphalerite coexisting with fahlore ranges from 0.8 to 9.4 mol %. The complete solid solution series Fe-tetrahedrite–Zn-tetrahedrite–Fe-tennantite–Zn-tennantite reflected in Sb/(Sb + As) and Fe/(Fe + Zn) ratios ranging from 0 to 0.97 and from 0.07 to 1.00, respectively, with a predominant negative relationship between these ratios has been identified for the first time at the deposit. Stepped, oscillatory, and combined stepped-oscillatory growth zonings within fahlore grains and heterogeneous aggregates of fahlore have been found. Fahlore is enriched in As with respect to Sb, and Zn-tetrahedrite is followed by Fe- and Zn-tennantite from early to late generation; Zn-tetrahedrite is followed by Fe-tennantite in zoned grains and overgrown rims; sphalerite crystallized at decreased temperature and sulfur fugacity. The evolution of the chemical composition of fahlores was caused by the evolving temperature, fluid salinity, and conditions of metal migration.

Geology of Ore Deposits. 2018;60(2):93-120
pages 93-120 views

Ore Mineralization in Ultramafic and Metasomatic Rocks of the Ospin–Kitoi Massif, Eastern Sayan

Grigor’eva A., Damdinov B., Sluzhenikin S.

Аннотация

In the Ospin–Kitoi ultramafic massif of the Eastern Sayan, accessory and ore Cr-spinel are mainly represented by alumochromite and chromite. Copper–nickel mineralization hosted in serpentinized ultramafic rocks occurs as separate grains of pentlandite and pyrrhotite, as well as assemblages of (i) hexagonal pyrrhotite + pentlandite + chalcopyrite and (ii) monoclinal pyrrhotite + pentlandite + chalcopyrite. Copper mineralization in rodingite is presented by bornite, chalcopyrite, and covellite. Talc–breunnerite–quartz and muscovite–breunnerite–quartz listvenite contains abundant sulfide and sulfoarsenide mineralization: pyrite, gersdorffite, sphalerite, Ag–Bi and Bi-galena, millerite, and kuestelite. Noble metal mineralization is represented by Ru–Ir–Os alloy, sulfides, and sulfoarsenides of these metals, Au–Cu–Ag alloys in chromitite, laurite intergrowth, an unnamed mineral with a composition of Cu3Pt, orcelite in carbonized serpentinite, and sperrylite and electrum in serpentinite. Sulfide mineralization formed at the late magmatic stage of the origination of intrusion and due to fluid–metamorphic and retrograde metasomatism of primary rocks.

Geology of Ore Deposits. 2018;60(2):121-141
pages 121-141 views

Paleoproterozoic Keulik–Kenirim Ore-Bearing Gabbro–Peridotite Complex, Kola Region: A New Occurrence of Ferropicritic Magmatism

Smolkin V., Lokhov K., Skublov S., Sergeeva L., Lokhov D., Sergeev S.

Аннотация

Comprehensive research of ore-bearing differentiated intrusions of the Keulik–Kenirim structural unit, which represents a fragment of the Paleoproterozoic Pechenga–Varzuga Belt, has been carried out for the first time. The intrusions are subvolcanic by type and lenticular in shape, nearly conformable and steeply dipping. They are made up of peridotite, olivine and plagioclase pyroxenites, and gabbro metamorphosed under amphibolite facies conditions along with host basic volcanics. All intrusive rocks are enriched in TiO2 and FeO. Sulfide Cu–Ni mineralization is represented by disseminated, pocket, and stringer-disseminated types, which are clustered in the peridotitic zone as hanging units and bottom lodes. The Ni content in disseminated ore is estimated at 0.45–0.55 wt % and 1.15–3.32 wt % in ore pockets; the Cu grades are 0.17–0.20 and 0.46–5.65 wt %, respectively. To determine the age of intrusions and metamorphism of intrusive and volcanic rocks, various isotopic systems have been used: Sm–Nd (TIMS) in rock and U–Pb (SIMS SHRIMP) and Lu–Hf (LA-ICP-MS) in zircon. Conclusions on the origin of zircons are based on concentrations of trace elements including REE therein and Hf–Nd correlation in zircons and rocks. The U–Pb system of zircons reflects episodes of igneous rock formation (1982 ± 12 Ma) and their postmagmatic transformation (1938 ± 20 Ma). The last disturbance of the U–Pb isotopic system occurred 700 and 425 Ma. Xenogenic zircons dated from 3.17 to 2.65 Ga have been revealed in the studied samples. These zircons were captured by magma from the Archean basement during its ascent. The intrusions were emplaced synchronously with economic ore formation in the Pechenga ore field (1985 ± 10 Ma). The peak metamorphism of intrusive rocks under amphibolite facies conditions is recorded at 40 Ma later. The differentiated intrusions of the Keulik–Kenirim structural unit are close in their internal structure, mineralogy, and geochemistry, as well as in age and features of related Cu–Ni mineralization to ore-bearing intrusions of the Pechenga ore field, which are derivatives of ferropicritic (ferriferous) magmatism.

Geology of Ore Deposits. 2018;60(2):142-171
pages 142-171 views

Origin of Fe–Ti Oxide Mineralization in the Middle Paleoproterozoic Elet’ozero Syenite–Gabbro Intrusive Complex (Northern Karelia, Russia)

Sharkov E., Chistyakov A., Shchiptsov V., Bogina M., Frolov P.

Аннотация

Magmatic oxide mineralization widely developed in syenite–gabbro intrusive complexes is an important Fe and Ti resource. However, its origin is hotly debatable. Some researchers believe that the oxide ores were formed through precipitation of dense Ti-magnetite in an initial ferrogabbroic magma (Bai et al., 2012), whereas others consider them as a product of immiscible splitting of Fe-rich liquid during crystallization of Fe–Ti basaltic magma (Zhou et al., 2013). We consider this problem with a study of the Middle Paleoproterozoic (2086 ± 30 Ma) Elet’ozero Ti-bearing layered intrusive complex in northern Karelia (Baltic Shield). The first ore-bearing phase of the complex is mainly made up of diverse ferrogabbros, with subordinate clinopyroxenites and peridotites. Fe–Ti oxides (magnetite, Ti-magnetite, and ilmenite) usually account for 10–15 vol %, reaching 30–70% in ore varieties. The second intrusive phase is formed by alkaline and nepheline syenites. Petrographical, mineralogical, and geochemical data indicate that the first phase of the intrusion was derived from a moderately alkaline Fe–Ti basaltic melt, while the parental melt of the second phase was close in composition to alkaline trachyte. The orebodies comprise disseminated and massive ores. The disseminated Fe–Ti oxide ores make up lenses and layers conformable to general layering. Massive ores occur in subordinate amounts as layers and lenses, as well as cross-cutting veins. Elevated Nb and Ta contents in Fe–Ti oxides makes it possible to consider them complex ores. It is shown that the Fe–Ti oxide mineralization is related to the formation of a residual (Fe,Ti)-rich liquid, which lasted for the entire solidification history of the first intrusive phase. The liquid originated through multiple enrichment of Fe and Ti in the crystallization zone of the intrusion owing to the following processes: (1) precipitation of silicate minerals in the crystallization zone with a corresponding increase in the Fe and Ti contents in an interstitial melt; and (2) periodic accumulation of the residual melt in front of this zone. Unlike liquid immiscibility leading to melt splitting into two phases, this liquid dissolved the residual components of the melt. Correspondingly, such an Fe-rich liquid has unusual properties and requires further study.

Geology of Ore Deposits. 2018;60(2):172-200
pages 172-200 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».