Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 61, № 1 (2019)

Article

Distribution of Mineralization, Ages, and Sources of the Malomyr Gold Deposit, Eastern Part of the Mongol–Okhotsk Fold Belt

Kadashnikova A., Sorokin A., Ponomarchuk V., Travin A., Ponomarchuk A., Eirish L.

Аннотация

A reliable estimate is obtained for the gold mineralization age for the Malomyr deposit (eastern part of the Mongol–Okhotsk Fold Belt), one of the most well-known in the Russian Far East. The obtained data indicate that the age of the hydrothermal ore process that led to the formation of the Malomyr deposit can be estimated at ~134–130 Ma and the age of postore dikes is 110–104 Ma. At the same time, there are no data on magmatism manifesting itself within the studied region 134–130 Ma ago, making impossible to link the ore mineralization of the Malomyr deposit to magmatic processes. We think that dislocation processes accompanied by hydrothermal activity played a significant role in the mobilization, redistribution, and formation of the Malomyr deposit, which was supported by the results of structural studies. The first results of Rb-Sr and δ34S studies indicate that the ore material came from both crustal and mantle sources.

Geology of Ore Deposits. 2019;61(1):1-13
pages 1-13 views

Ore Formation Conditions of the Aunik F-Be Deposit (Western Transbaikalia)

Damdinova L., Damdinov B., Rampilov M., Kanakin S.

Аннотация

The paper presents the results of studying of the ore composition, ore-forming solutions, formation conditions, and sources of Be mineralization based on the example of the Aunik F-Be deposit, which is part of the Western Transbaikalia beryllium-bearing province; the main factors responsible for the beryllium mineralization are also assessed. The ores of the deposit are represented by feldspar-fluorite-phenakite-bertrandite metasomatites that formed after carboniferous limestones during its metasomatic replacement by hydrothermal solutions bearing F, Be, and accompanying admixture elements. It is established that the early phenakite-fluorite assemblage formed from high-fluoride CO2-bearing solutions with high alkalinity and a salinity of ~10.5–12 wt % NaCl eq. in the temperature range ~370–260°C at pressures from 1873 to 1248 bar. Later fluorite and bertrandite were formed by solutions with a salinity of 6.4–7.7 wt % NaCl eq. in the temperature range of ~156–110°C and pressure range of 639–247 bar. Isotopic composition studies of the ore assemblage minerals have confirmed the apocarbonate nature of the main ores at the deposit, making it possible to establish the igneous nature of the ore-forming paleohydrothermal solutions, the source of which were subalkaline leucogranites. The main factors controlling the formation of F-Be ores were the decrease in F activity in solutions owing to bonding of Ca and F in fluorite and the reduction in temperature during ore deposition. The increased alkalinity of the ore-forming solutions controlled the low solubility of Be complexes, which resulted in a low Be content in ores and a relatively small-scale mineralization at the deposit.

Geology of Ore Deposits. 2019;61(1):14-37
pages 14-37 views

Isotope (δ34S, δ13C, δ18O) Compositions of Disseminated Sulfide Mineralization in Igneous Rocks of the Dukat Ore Deposit (Northeastern Russia)

Dubinina E., Filimonova L., Kossova S.

Аннотация

The paper discusses a study of variations in the δ34S, δ13C, δ18O compositions of disseminated sulfides and the carbonate phase, occurring in trace amounts in igneous rocks, which control the outlines of the unique Dukat Au-Ag deposit (northeastern Russia). The parameters obtained were compared with similar isotope parameters of ore assemblages of the same deposit. The δ34S values in sulfides and jarosite sampled in igneous rocks lie in a narrow interval (from −3.4 to + 3.6‰), which is comparable with the interval of δ34S variations in sulfides from orebodies (from −4.5 to + 2.0‰). Sulfur in pyrite of the early generation from K-Na leucogranites and pyrite from orebodies originated from the same source. Pyrite formed at late magmatic stages is characterized by a lighter sulfur isotope composition. Carbonate phases in igneous rocks of the Dukat ore deposit have low δ13C values (from −12.8 to −8.8‰). Based on oxygen isotope composition, carbonates are subdivided into two groups: those in equilibrium with the silicate matrix of rocks at high temperatures and those with abnormally low δ18O values (from −0.8 to +0.9‰). The data obtained can be described by a model that proposes that the formation of the sulfur isotope composition in sulfide and carbonate occurs in the process of thermochemical sulfate reduction (TSR) due to oxidation of organic carbon. Calculations show that the δ34S and δ13C values measured in rocks and ore assemblages of the Dukat ore deposit may have appeared due to abiogenic reduction of marine sulfate in a temperature range of 300–450°C. Comparison of the isotope parameters of carbonates from rocks and ore assemblages show that the source of carbonates in orebodies may have been country (underlying) rocks and the fluid released from cooling intrusive bodies of K-Na leucogranites, in which about 80% CO2 is lost.

Geology of Ore Deposits. 2019;61(1):38-49
pages 38-49 views

Primorskoe Epithermal Ag-Au Deposit (Northeastern Russia): Geological Setting, Mineralogy, Geochemistry, and Ore Formation Conditions

Savva N., Volkov A., Sidorov A., Kolova E., Murashov K.

Аннотация

The potentially large Primorskoe epithermal Au-Ag deposit is represented by three areas: the Kholodnyi, Spiridonych, and Teplyi. It is located in the Omsukchan district of Magadan oblast, where mining is carried out at the largely similar Dukat, Lunnoe, Gol’tsovoe, Arylakh, Tidit, Pereval’noe, and other deposits. The deposit under review is located in the Kalalaga volcano-tectonic depression, where ore has been emplaced in a gently dipping sequence of Late Cretaceous ignimbrites and rhyolites more than 700 m in thickness crosscut by numerous intermediate and mafic dykes. According to drilling data, there is a leucocratic granite massif 400–500 m beneath the deposit, which is exposed on the surface in the northeastern part of the ore field. The presence of Bi-bearing galena and matildite, as well as medium- to high-temperature metasomatic facies (epidote and actinolite) and the specific physicochemical conditions of epithermal Ag-Au ore emplacement, attests to the above-intrusion position and the role of granitoids as high-temperature magmatic fluid generators responsible for supplying Bi and heating the host rock. The ore chemistry is quite consistent with its mineral composition. High Mn and Ag; elevated Au; low Cu, Pb, Zn, Sb, As, Bi, and Te; and low total REE concentrations were established, along with negative Eu and positive Ce anomalies. The high Te/Se, Sr/Ba, Y/Ho, and U/Th ratios in the ores are due to their location in the area influenced by the granitoid pluton. The physicochemical parameters of ore emplacement in the Teplyi area are unusual: high temperatures, low salt concentrations, and fluid densities typical of a “dry vapor” environment. The obtained data allow the Primorskoe to be classified as an intermediate sulfidation epithermal deposit. The data discussed below are of practical use for regional metallogenic forecasting, exploration, and economic assessment of epithermal Ag-Au deposits.

Geology of Ore Deposits. 2019;61(1):50-73
pages 50-73 views

H+ and Li+ Charge Compensator Ions in Structural Channels of Quartz from Gold Deposits of the Darasun Gold Ore Field (Eastern Transbaikalia, Russia): Electron Paramagnetic Resonance Data

Rakov L., Prokofiev V., Zorina L.

Аннотация

Electron paramagnetic resonance (EPR) is used to study the composition and diffusion mobility of charge compensator ions in structural channels of quartz from the Darasun, Teremkinskoe, and Talatui gold fields of the Darasun ore field. The ion distribution features in quartz are evaluated based on their ability to participate in neutralizing the electrical charge of structural defects occurring in quartz. In accordance with this, the ion composition was assessed from the ratio of concentrations of Ti centers with different charge compensator ions, and their mobility was determined based on the formation rate of these centers under irradiation of quartz. The research shows the presence of two main types of charge compensator ions, H+ and Li+, in structural channels of quartz from the Darasun ore field. It was found that the diffusion mobility of H+ ions in channels are one to two orders of magnitude higher than that of Li+. There is no correlation between the composition of charge compensator ions and the fluid composition. Different ratios between concentrations of H+ and Li+ ions in structural channels of quartz from different deposits were established. The maximum concentrations of H+ ions and the minimum concentrations of Li+ ions are recorded in quartz from the Darasun ore field, and an inverse relation was recorded in quartz from the Talatui deposit. This can be explained by the migration of the gas component of fluid during ore genesis. It was shown that EPR can be applicable to quantitatively estimate the degree of dynamic recrystallization of quartz.

Geology of Ore Deposits. 2019;61(1):74-97
pages 74-97 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».