Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 61, № 3 (2019)

Article

Badzhal Tin Magmatic-Fluid System, Far East, Russia: Transition from Granite Crystallization to Hydrothermal Ore Deposition

Bortnikov N., Aranovich L., Kryazhev S., Smirnov S., Gonevchuk V., Semenyak B., Dubinina E., Gorelikova N., Sokolova E.

Аннотация

The Badzhal tin magmatic-fluid system of the eponymous volcanoplutonic zone in the Middle Amur Region has been studied to reveal special characteristics of the transition from granite crystallization to rare-metal deposition. Therefore, the authors have conducted an in-depth study of melt, fluid-melt, and fluid inclusions and oxygen isotope composition of minerals from granitic rocks of the Verkhneurmiisky pluton within the Badzhal volcanoplutonic zone and minerals of the Pravourmiisky and Blizhnee Sn-W deposits. Greisen alteration and hydrothermal veins at the Pravourmiisky and Blizhnee deposits resulted from a single magmatic-fluid system related to the Verkhneurmiisky granite pluton, which is one of domes of the Badzhal batholith. The transition has been traced from magmatic crystallization of granite to hydrothermal ore formation and evolution of magmatic fluid from its separation to Sn and W deposition. Mixed fluid-melt inclusions directly support tin-bearing fluid separation during melt crystallization. The glass compositions indicate that granite and porphyry granite crystallized from felsic metaluminous to peraluminous melts with an ASI index and alkali content ranging from 0.95 to 1.33 and from 6.02 to 9.02 wt %, respectively. The Cl and F concentrations in glasses are 0.03–0.14 and 0.14–0.44 wt %, respectively, and are higher than those in the bulk rock compositions, 0.02 and 0.05–0.13 wt %, respectively. These differences indicate that Cl and F could have been removed from a granitic melt during its crystallization and degassing. The H2O concentration estimated based on the electron deficiency of summed microprobe analyses is 8–11 wt %. This was estimated taking into account the possible effect of “sodium loss” (Nielsen and Sigurdson, 1981) when analyzing hydrated glasses. Taking into account the high uncertainty of such estimation (Devine et al., 1995), this value is extremely uncertain and the studied melts should be considered as containing 9.5–10.0 wt % H2O. The melt inclusion study shows that some of the magmatic rocks of the Badzhal ore-magmatic system formed at approximately 650°C. The melt from which these rocks crystallized was felsic, moderate in fluorine, and meta- and peraluminous. Low-temperature crystallization is probably caused by high water pressure and elevated fluorine content. These inclusions most likely characterize the final stage of the pluton, at which crystals, residual melt, and magmatic fluid phase coexist. Fluid responsible for the formation of greisens at the Pravourmiisky deposit has features very close to those of supercritical fluid trapped by magmatic minerals. Its salinity, ranging from ∼9 to 12 wt % NaCl equiv., and maximal temperature of 550°C (taking into account pressure correction for ∼1 kbar) are close to those of magmatic fluid. This makes it possible to relate the origin of the fluid to cooling of the pluton. Greisen and quartz-cassiterite-topaz veins of the Pravourmiisky deposit formed from magmatic fluid at a decreased temperature from 550–450 to 480–380°C. The fluid responsible for the formation of quartz-cassiterite veins at the Blizhnee deposit also separated from magma as indicated by the oxygen isotope composition (\({\delta^{18}}{{\rm{O}}_{{{\rm{H}}_2}{\rm{O}}}}\sim8.5{\%\circ}\)), which evolved in a shallower environment under much lower pressure. This resulted in fluid with a salinity of ∼13 wt % NaCl equiv. at 420–340°C being separated into a low-density low-saline vapor and brine with a salinity of 33.5–37.4 wt % NaCl equiv. The oxygen isotope composition of the mineralizing fluid was governed by equilibrium with granite within a wide temperature range (from ∼700°C to the onset of greisen crystallization). The agreement between the measured data and those calculated based on the suggested model indicates that a significant volume of external fluid having different isotopic features and not in equilibrium with the Verkhneurmiisky granite did not enter the magmatic-fluid system. The revealed differences in the physicochemical formation conditions of the two studied deposits are not critical and support their formation within a single magmatic-fluid system.

Geology of Ore Deposits. 2019;61(3):199-224
pages 199-224 views

Physicochemical Modeling of Hydrothermal Mineralization Processes at Ni–Co–As (±U–Ag), Co–S–As (±Au–W), and Cu–Co–As (±Sb–Ag) Deposits

Lebedev V., Borovikov A., Gushchina L., Shabalin S.

Аннотация

The paper reports generalized investigation data on the composition of metal-bearing fluids at hydrothermal cobalt deposits, which formed in different geodynamic settings during the development of alkali and alkali-basic intrusions and dikes. To determine the physicochemical parameters of ore deposition from fluid inclusions in minerals, both traditional and new instrumental thermobarogeochemical methods were used: thermometry, cryometry, and Raman spectroscopy; the concentrations of ore- and rock-forming elements in individual fluid inclusions were evaluated by LA-ICP-MS. The results served as the basis for a study focused on thermodynamic modeling of joint transport and deposition of Co, Ni, Cu, Fe, Mg, Ca, Ag, Au, Bi, U, Pt, and Pd; the number of equilibrium states of the hydrothermal system similar in composition to the natural ore-forming fluids was also calculated. The physicochemical factors of native Au, Ag, Pt, and Pd in the ores at such deposits were revealed. These data can be used to develop correct genetic models for the ore-forming systems of the cobalt deposits proper and to solve the problem of searching for them.

Geology of Ore Deposits. 2019;61(3):225-255
pages 225-255 views

Minerals of the Pb–As–Sb–S and Cu–Pb–As–Sb–S Systems in Ores of the Berezitovoe Gold-Polymetallic Deposit, Upper Amur Region, Russia

Vakh A., Avchenko O., Gvozdev V., Goryachev N., Karabtsov A., Vakh E.

Аннотация

The composition and genesis of Pb–As–Sb sulfosalts from ores of the Berezitovoe gold deposit, Upper Amur Region, located in the eastern part of the Mongolia-Okhotsk orogenic belt are reported. Lead (Pb–Cu) sulfosalts are tsugaruite, dufrenoysite, boulangerite, menegenite, Bi-rich menegenite (Bi up to 11.5 wt %), and minerals of the jordanite-geocronite and bournonite-seligmannite solid solution series. Basic features of the relationship between Pb sulfosalts and ore and silicate minerals in various assemblages of veinlet mineralization and variations in the chemical composition of sulfosalts have been revealed. Compositionally complex Pb (Pb–Cu)–As–Sb sulfosalts form quasi-continuous solid solution series, which differ in the proportions of semimetals, and semimetals and lead. It is suggested that the major compositional features of Pb–As–Sb sulfosalts at the Berezitovoe deposit are controlled by partial melting of sulfide minerals during high-temperature metamorphism of primary polymetallic ore.

Geology of Ore Deposits. 2019;61(3):256-273
pages 256-273 views

Coexisting Bournonite–Seligmannite and Tennantite–Tetrahedrite Solid Solutions of the Darasun Gold Deposit, Eastern Transbaikalia, Russia: Estimation of the Mineral Formation Temperature

Lyubimtseva N., Bortnikov N., Borisovsky S.

Аннотация

Mineral assemblages, the peculiarities of intergrowths, chemical composition, and Sb and As distribution in coexisting fahlore and bournonite-seligmannite solid solutions of the Darasun gold deposit are studied. The almost complete solid solution between bournonite and seligmannite with continuous Sb–As isomorphism for Sb/(Sb + As) ratios from 0.21 to 1.00 is identified for the first time for the Darasun deposit using a microprobe. The composition of fahlore coexisting with bournonite widely varies: Sb/(Sb + As) ratio 0.03–0.96 and Fe/(Fe + Zn) ratio 0.36–0.87. The mutual compositional evolution from early Sb to late As coexisting solid solutions is identified. Based on the Sb and As distribution between coexisting fahlore and bournonite-seligmannite, the temperatures of their joint crystallization are estimated, as well as those of the productive stage, where they are associated with native gold and tellurides (90–335°C).

Geology of Ore Deposits. 2019;61(3):274-291
pages 274-291 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».