Prediction of thermal conductivity of liquid and vapor refrigerants for pure and their binary, ternary mixtures using artificial neural network


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The determination of thermophysical properties of hydrofluorocarbons (HFCS) is very important, especially the thermal conductivity. The present work investigated the potential of an artificial neural network (ANN) model to correlate the thermal conductivity of (HFCS) at (169.87-533.02) K, (0.047-68.201) MPa, and (0.0089-0.1984) W/(m·K) temperature, pressure, and thermal conductivity ranges, respectively, of 11 systems from 3 different categories including five pure systems (R32, R125, R134a, R152a, R143a), four binary mixtures systems (R32 + R125, R32 + R134a, R125 + R134a, R125 + R143a), and two ternary mixtures systems (R32 + R125 + R134a, R125 + R134a + R143a). Each one received 1817, 794 and 616 data points, respectively. The application of this model for these 3227 data points of liquid and vapor at several temperatures and pressures allowed to train, validate and test the model. This study showed that ANN models represent a good alternative to estimate the thermal conductivity of different refrigerant systems with a good accuracy. The squared correlation coefficients of thermal conductivity predicted by ANN were R2 = 0.998 with an acceptable level of accuracy of RMSE = 0.0035 and AAD = 0.002 %. The results of applying the trained neural network model to the test data indicate that the method has a highly significant prediction capability.

Об авторах

N. Ghalem

University of Blida

Email: abdeltif.amrane@univ-rennes1.fr
Алжир, Blida

S. Hanini

University of Médéa

Email: abdeltif.amrane@univ-rennes1.fr
Алжир, Médéa

M. Naceur

University of Blida

Email: abdeltif.amrane@univ-rennes1.fr
Алжир, Blida

M. Laidi

University of Médéa

Email: abdeltif.amrane@univ-rennes1.fr
Алжир, Médéa

A. Amrane

University of Rennes

Автор, ответственный за переписку.
Email: abdeltif.amrane@univ-rennes1.fr
Франция, Rennes

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).